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Abstract: This paper describes the methods of construction and the main characteristics of a solid texture database freely
available for texture classification experiment. Here the purpose is to propose a solid texture database with
many classes of different solid textures to allow an evaluation of properties and performance of analysis meth-
ods. Each images is described by a xml file made according to a DTD which is available in our web site. Using
this formalism, it is even possible for a researcher to propose his own images or creation methods to complete
this solid texture database. At last we discuss about different ways to exploit the database by reviewing some
evaluation methods used to evaluate performance of classification and segmentation algorithms.

1 INTRODUCTION

Texture analysis is an important topic of image
analysis and many researchers have attempted to ex-
plain texture perception (Julesz, 1962). Research in
this domain can be divided in three types of prob-
lems including texture classification, texture segmen-
tation and texture synthesis. Existing feature ex-
traction techniques can be divided into four cate-
gories (Tuceryan and Jain, 1998) that is to say sta-
tistical (Haralick, 1979; Haralick et al., 1973; Ojala
et al., 1996), geometrical (Tuceryan and Jain, 1990),
frequential (Mallat, 1989) and model based meth-
ods (Chellappa and Jain, 1993; Mosquera et al.,
1992). All these methods have been mainly devel-
oped and experimented on two-dimensional texture
images. Recently, some of these methods have been
investigated to analyse solid texture. A large number
of papers including a solid texture analysis method re-
fer to medical analysis (Jafari-Khouzani et al., 2004;
Showalter et al., 2006) except in (Suzuki et al., 2004)
which use a solid texture database based on Perlin’s
noise functions. Currently, no comparison between
all these methods are available because they all work
on different types of images. The purpose of this pa-
per is not to propose texture synthesis methods to ob-
tain solid texture as realistic as possible but to propose

a solid texture database with many classes to allow an
evaluation of properties and performance of solid tex-
ture analysis methods. In the section 2 we present
the different methods used to generate the database
and properties of each of them. In section 3, we ex-
plain the organization and structure of our database
and then section 4 explain different way to exploit it
with a review of current evaluation methods.

2 SYNTHESIS AND PROPERTIES
OF THE SOLID TEXTURE
DATABASE

Solid textures, sometimes called volumetric tex-
tures, are textures represented in three-dimensional
space and can be considered as a two-dimensional
texture images series or as a texture that can be found
in a volumetric data. Volumetric texture is different
from 3D Texture or Volumetric Texturing. 3D Tex-
ture (Cuba and Dana, 2004) refers to the observed 2D
texture of a 3D object viewed from a particular angle
and with different lighting conditions and Volumet-
ric Texturing (Neyret, 1995) correspond to the ren-
dering of repetitive geometries and reflectance into
voxels. There are many two-dimensional databases



to compare texture analysis methods and one of the
best known is the Brodatz database (Brodatz, 1966).
In (Kopf et al., 2007), Johannes Kopf et al construct
solid textures from two-dimensional texture images.
Some examples are available 1 but currently there are
too few images to make a classification experiment.
In (Gool et al., 1985), Van Gool et al describe three
classes of texture with deterministic textures, stochas-
tic textures and observable textures. The first category
is characterized by the repetition of a geometrical pat-
tern. This kind of texture can be synthesized using a
pattern of specific size and direction. To the contrary,
stochastic textures are irregular and no repetitive pat-
tern is identifiable. At last observable textures can
be defined as a mix between geometric and stochastic
textures. Patterns are very closed but not identical.
To have a complete and representative database, we
have tried to build synthetic images representative of
all these three classes.
To limit necessary disk space and processing time,
each of the volumetric texture images have a size of
643. This size seems sufficient to allow classification
experiments. The images have been constructed using
four different methods.

With a first method, volumetric textured images are
constructed using two-dimensional texture images
like Brodatz textures, fractal textures etc. Two or
more two-dimensional texture images are interpolated
to obtain a three dimensional image (Figure 1). It is
important to know that two-dimensional textures used
to build a three-dimensional image are not exactly
similar. With the interpolation, these textures have a
particular direction and evolve regularly. A good ex-
ample of this kind of texture could be a tree bole. An
interpolated texture can be defined as a set of textured
blocks BT built using two-dimensional textures E:

BT,i = ET + i
(ET −ET+1)

M
(1)

with M = N/(R− 1) the number of two-dimensional
components in a block, N the depth of the solid tex-
ture, R the number of two-dimensional textured im-
ages used to interpolate, T = {0, ...,R− 1} and i =
{0,1, ...,M−1}.
The properties of this kind of texture depends on the
chosen two-dimensional texture and the number of in-
terpolation plans.
A second method consists to use geometric shapes
like sphere, cube, ellipsis, etc. With this method it
is possible to construct deterministic texture. A pat-
tern will be a geometric shape allocated in a given

1http://johanneskopf.de/publications/
solid/textures/index.html

(a) Two-dimensional textured
images

(b) Volumetric texture by in-
terpolation

Figure 1: Example of construction of an interpolated solid
texture

direction. Moreover, observable texture can be easily
generated for example using many sphere with ran-
dom size and random arrangement. To construct a
gruyere texture, we place randomly sphere or ellipsis
with random sizes in a yellow three-dimensional im-
age. The properties of this type of texture depends on
the number of patterns, the shape of the patterns, the
size of patterns which can be fixed or randomly cho-
sen, and the color which can also take a random or
fixed value. Figure 2 shows two volumetric textures
generated with this method.

(a) Cube Pattern (b) Sphere Pattern

Figure 2: Example of solid textures with geometric shapes

The third method allows to synthesize solid texture
using Fourier transformation as presented in (Lewis,
1984). For that, it is necessary to construct a power
spectrum in order to specify frequencies that will be
present in the synthesized texture and their amplitude.
It is so possible to paint it with the respect of the quad-
rant symmetry or using power spectrum from an exist-
ing texture. For the phase spectrum, we can use ran-
dom value or take it from an existing texture. Then,
we are able to synthesize solid textures with an in-
verse Fourier transform using these two components.
Each example of texture in a given class is not exactly
similar. Indeed, examples in a class are made using
a unique power spectrum and a phase spectrum with



(a) Power Spectrum 1 (b) Texture build with the
first power spectrum

(c) Power Spectrum 2 (d) Texture build with the
second power spectrum

Figure 3: Example of solid textures build using inverse
Fourier transform

some variations. As describe in (Lewis, 1984), this
texture synthesize method is not intuitive, but allows
to construct rich textures difficult to obtain in the spa-
tial domain.
At last, it is also possible to obtain a fourth category
of three-dimensional images using a mix between
the three previous methods. Instead of generate a
pattern with a color like in the second method, we
can create patterns with a given texture using the
first synthesis method or texture obtained with the
inverse Fourier transform (Figure 4). The textures

(a) Texture Inside Patterns (b) Texture Inside and Out-
side Patterns

Figure 4: Example of solid textures with texture outside or
inside geometric shapes

Figure 5: [a-c]) Solid textures with random rotation, [d-e]
Two blurry textures, [f-g] Two noisy textures, [h-i] Two sub-
sampled textures

so generated contain geometric shapes with a given
texture. Moreover it is possible to insert a texture
outside patterns to obtain a textured background. A
texture like this one is described by the number of
pattern, the shape and the size of patterns, and the
used texture inside and outside patterns.
To complete this database, we apply some trans-
formations on each class of texture with rotations
according x, y and z axis. This is so possible to test if
a texture analysis method is invariant to a given trans-
formation. Moreover, Gaussian noise, Gaussian blur
and sub-sampling are applied to increase variability
in each existing volumetric texture classes (Figure
5). The interest of using these transformations is to
test for example the robustness to noise or blur of an
analysis method and to be able to increase easily the
difficulty of the comparison between images of the
database.

3 ORGANIZATION OF THE
DATABASE

Our database is now available in free access 2 and
it is so possible to evaluate volumetric texture anal-

2http://www.rfai.li.univ-tours.fr/fr/ressources/
3Dsynthetic_images_database.html



ysis methods with classification experiments or with
segmentation problems. The database is organized as
follow: each textured images are allocated accord-
ing to the synthesis method that is to say their are
partitioned in four folders. In each folder of texture
synthesize type, images are assigned according to the
applied distortion: nothing, Gaussian blur, Gaussian
noise, rotation or sub sampling. At last, folders of
distortion contain examples of the different classes of
volumetric textures.
Currently, our database contains 95 different classes.
30 of these classes have been built with the interpola-
tion method, 25 with the geometrical shape method,
15 with the inverse Fourier transform and 25 with the
blended method. Each class is composed by 50 exam-
ples : 10 blurry textures, 10 noisy textures, 10 textures
with sub sampling distortion, 10 with random rota-
tions and 10 without any transformation. Each volu-
metric image is corresponding to a set of 64 gray level
BMP images of 64×64 pixels stored in a specific di-
rectory. So it is very easy to implement a program
able to load such three-dimensional images. A viewer
is also available on the web site. We choose to make
volumetric textures of size 643 because it is a suffi-
cient size for experiments and this is a good compro-
mise for disk storage. At last, images for segmenta-
tion experiments (images that contain more than one
texture) have a size of 1283 that allows a better degree
of freedom to emplace textures.
For each volumetric images, a xml file is generated
and contains informations about the image tag. The
root of a xml file is an image which can contain one or
many solid texture descriptors. Indeed, for a texture
recognition problem the used three-dimensional im-
ages correspond to an unique solid texture, whereas a
three-dimensional image contains more than one vol-
umetric texture for a segmentation problem. A solid
texture is defined by a packaging, a name which cor-
respond to the name of a class, the type of synthesis
used, properties and distortions which have been ap-
plied. A packaging is used because in the case of a
segmentation problem, a volumetric texture is not au-
tomatically defined in a cube. Currently, a texture can
be created according to three different shapes (cube,
sphere, ellipsis), with a given size, a given location
and with a particular orientation. Properties depend
on the type of synthesize method used to make a tex-
ture as describe in section 2. For example, a volumet-
ric texture made with inverse Fourier transform de-
pends on the input power spectrum. In order to utilize
these xml files we made a DTD file (appendix) which
is available in our web site.
In this section, we describe the structure of our
database. Each images is described by a xml data

and a DTD specify the formalism. Using this DTD,
it is then possible for a researcher to complete this
database with its proper methods or with an existing
one in order to increase the number of classes and
images. Currently the database contains 95 differ-
ent classes which is enough if we compare with ex-
isting two-dimensional databases. For example Bro-
datz database (Brodatz, 1966), which is a standard
for evaluating texture algorithms, has 112 different
classes.

4 EXPLOITATION OF THE
DATABASE

This part is a description of different ways to ex-
ploit our database. We have seen that two types of
images are available: images containing one solid tex-
ture and images with multiple solid textures. Three-
dimensional images with single volumetric texture
can be used to create a classification problem. Here
the purpose is that the tested classification algorithms
decide which is the class of a texture. Images with
many solid texture allow to test methods for classi-
fication (a label is attributed to a voxel) or segmen-
tation. Image segmentation and recognition are two
aspects of the same problem: in the first case an im-
age is divided into homogeneous zones delimited by
boundaries whereas classification consists in labeling
or indexation of components (image,voxel etc.). A
lot of methods have been proposed for the evaluation
of segmentation and classification algorithms (Zhang,
1996). Here we will review some of them to explain
how to evaluate an algorithm with our database.

4.1 Classification evaluation

We have seen that the goal of a classification method
is to decide the class of a given image. In general,
a classification system can be divided in three step.
The first one consist to extract features from the im-
ages. In the case of texture problem, it is used clas-
sical algorithms which have been quickly presented
in our introduction (Haralick et al., 1973; Chellappa
and Jain, 1993; Mallat, 1989; Ojala et al., 1996). The
second one consist in a selection of features. This
step allows to reduce the feature space and to keep
the most significant features for an application. In
the last one, feature vectors are used to feed classi-
fication algorithms like for example neural network,
support vector machine, k-nearest neighbors etc. To
classify images with these algorithms, there are two
important stages: a learning phase which uses a learn-
ing database and a test phase which is applied on a



test database. In the first phase, a classification al-
gorithm learns features which correspond to the dif-
ferent classes and during the second one, we just test
how the classification algorithm tags the different im-
ages. To evaluate classification systems and compare
their robustness in a given application, a classical ap-
proach is the confusion matrix which represent the
number of elements ci, j from the class i classified in
the class j. The normalized confusion matrix NCM
can be computed as follow:

NCMi, j =
ci, j

∑
T
k=1 ci,k

(2)

with T the number of considered classes.
Using this matrix, it is then possible to compute some
measures like:
the true positive rate,

T Pratei = NCMi,i (3)

false positive rate,

FPratei =
T

∑
j=1, j 6=i

NCMi, j (4)

accuracy,

Accuracy =
∑

T
i=1 NCMi,i

T
(5)

error classification rates ECR with for example:

ECR =
T

∑
i=1

0.5(∑T
j=1, j 6=i NCMi, j +∑

T
j=1, j 6=i

NCM j,i
T−1 )

T
(6)

In this error classification rate, we consider two errors
with elements from a given class i falsely classified as
elements of another class and elements classified in a
given class j but belonging to an other class i.
In (Martin et al., 2006), Martin et al propose an inter-
esting approach which consists to make a confusion
matrix taking into account the inhomogeneous units
and uncertain of the experts. This method can be in-
teresting in the case of natural images which usually
require more than one expert classification.
Another way to examine the performance of clas-
sifiers is to use a receiver operating characteristics
(ROC) graph which is a technique for visualizing and
selecting classifiers based on their performance. ROC
graphs are two-dimensional graphs where Y axis rep-
resents T Prate (formula 3) and where FPrate (for-
mula 4) is plotted on the X axis. For a given class, an
ROC graph describes trades off between true positive
and false positive. Then, if T classes are considered,
it is possible to generate T different ROC graphs. For
each classifier, we can compute a (FPrate,T Prate)
pair that allows to compare their performance (Figure

Figure 6: Example of an ROC graph

6). The point (0,1) which correspond to C classifier
represents perfect classification. For more informa-
tion about ROC analysis, Fawcett in (Fawcett, 2006)
presents a guide for using them in research in order to
promote better evaluation practices.
Their exist several measure to evaluate classification
problems. In (Ferri et al., 2008), Ferri et al describe
and study the relationships between the most common
performance measures for classifiers. They conclude
about the existence of important similarities between
measures but also significant differences between oth-
ers.

4.2 Segmentation evaluation

As explain in (Martin et al., 2006), method like
confusion matrix allows only an evaluation of the
classification approach but does not give an evalu-
ation of the produced segmentation. Segmentation
evaluation can not be made by visual comparison
but using some metrics. Some methods have been
proposed and can be classified in two families:
supervised evaluation methods that require access to
a ground truth reference and unsupervised evaluation
methods that do not have an a priori knowledge of
the correct segmentation.
Supervised evaluation methods measure the degree of
similarity between expert and machine segmentation.
The main advantage of this kind of methods is that
they allows to obtain a very fine resolution of the
evaluation. Nevertheless, generate a ground truth
can be difficult and cost a lot of time. It is not the
case with our database. Indeed segmented images
are available and it is easy to construct them using
informations in xml files (figure 7). To evaluate a



segmentation, it is necessary to take into account
different possible errors: under-segmentation where
components are missing, over-segmentation which
correspond to an addition of pixel in a contour, and lo-
calisation errors. In (Chabrier et al., 2008), Chabrier
et al propose a comparative study of 14 supervised
evaluation criteria according to several degradations
(under-segmentation, over-segmentation etc.). Their
conclusion is that the Pratt criterion is the most
effective and allows more discriminated results.

Unsupervised evaluation methods are quantitative
and objective evaluation and require no reference
image. These kind of method are very interesting
because for many applications it is sometimes im-
possible or very difficult to provide a reference im-
age. For example generate a ground truth for three-
dimensional ultrasound images is a problem because
of their complexity and the third dimension. A lot of
metrics have been presented and some of them pro-
pose for example to measure intra-region uniformity,
inter-region disparity, the shape etc. In (Zhang et al.,
2008), Zhang et al propose a survey of these unsu-
pervised methods and present experiments to evaluate
them along different situations.

(a) Original image

(b) Uniform region (c) Corresponding bound-
aries

Figure 7: Example of a three-dimensional image with three
solid textures and its corresponding ground truth

5 CONCLUSIONS

In this paper, we propose a solid texture database
for the evaluation and comparison of volumetric tex-
ture classification and segmentation methods. Differ-
ent approaches have been used to obtain images with a
wide variety of textures. The first method makes solid
textures by interpolating two-dimensional images, the
second method by using geometric shapes like sphere,
ellipsis or cube, the third one by applying the inverse
Fourier transform to a given power spectrum and the
last one by generating shapes with a particular texture.
Furthermore, different sets of images have been pro-
duced by adding different types of distortions. Two
types of images are available: images with one solid
texture and images with multiple solid textures. Each
of them is described by a xml data and a DTD spec-
ify the formalism. It is then possible for a researcher
to complete this database with other methods. At last,
we explain different ways to exploit our database with
a description of common evaluation methods.
Currently, this database is in free access and it is pos-
sible to test texture analysis methods for classification
and segmentation purpose. At last it could be interest-
ing to complete this database and provide some natu-
ral images like three-dimensional medical images.
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APPENDIX

In this appendix we present the main components of
our DTD. To obtain the complete DTD, it is possible
to download it using our website.

<!ELEMENT Image3D (Author,(SolidTexture+))>

<!ELEMENT Author (] PCDATA)>

<!ELEMENT SolidTexture (Packaging,Name,
SynthesisType,Properties,Distortion)>

————————————————————–
<!ELEMENT Packaging (Type,Size,Location,
Rotation)>
...
————————————————————–
<!ELEMENT Name (] PCDATA)>
————————————————————–
<!ELEMENT SynthesisType (] PCDATA)>
————————————————————–
<!ELEMENT Properties ((TextureModuleName)|
(Pattern,Size,GrayLevel,PatternTexture)|(Texture2D))>

<!ELEMENT TextureModuleName (]PCDATA)>
<!ELEMENT Pattern (PatternNumber,
PatternShape)>
...
<!ELEMENT Size (Radius1Min,Radius2Min,
Radius3Min,Radius1Max,Radius2Max,Radius3Max)>
...
<!ELEMENT GrayLevel (GrayLevelMin,
GrayLevelMax)>
...
<!ELEMENT PatternTexture (InnerTexture,
OuterTexture)>
...
<!ELEMENT Texture2D (Name,PlanNumber)>
...
————————————————————–
<!ELEMENT Distortion (GaussianSmooth,
GaussianNoise,SubSampling,Rotation)>
...
————————————————————–


