
UNIVERSITÉ
FRANÇOIS - RABELAIS

DE TOURS

École Doctorale Santé, Sciences, Technologies

Laboratoire d’Informatique (EA 2101)
Équipe Reconnaissance des Formes et Analyse d’Images

Thèse en cotutelle entre l’Université François - Rabelais de Tours, France et
l’Universitat Autònoma de Barcelona, Espagne.

THÈSE présenté par :

Muhammad Muzzamil LUQMAN

soutenue le : 02 mars 2012

pour obtenir le grade de : Docteur de l’université François - Rabelais

Discipline/ Spécialité : Informatique

Fuzzy Multilevel Graph Embedding for Recognition, Indexing
and Retrieval of Graphic Document Images

DIRECTEURS DE THÈSE
RAMEL Jean-Yves Professeur, Université François - Rabelais de Tours, France.
LLADOS Josep Professeur, Université Autonoma de Barcelone, Espagne.

CO-ENCADRANT
BROUARD Thierry Mâıtre de conférences, Université François - Rabelais de Tours.

RAPPORTEURS
BUNKE Horst Professeur émérite, Université de Bern, Suisse.
OGIER Jean-Marc Professeur, Université de La Rochelle, France.

JURY DE THÈSE

BROUARD Thierry Mâıtre de conférences, Université François - Rabelais de Tours.
BUNKE Horst Professeur émérite, Université de Bern, Suisse.
LLADOS Josep Professeur, Université Autonoma de Barcelone, Espagne.
RAMEL Jean-Yves Professeur, Université François - Rabelais de Tours, France.
TABBONE Salvatore-Antoine Professeur, Université de Lorraine, France.
VALVENY Ernest Mâıtre de conférences, Université Autonoma de Barcelone.

Cotutelle thesis between Universitat Autònoma de Barcelona, Spain and
Université François - Rabelais de Tours, France.

Fuzzy Multilevel Graph Embedding for

Recognition, Indexing and Retrieval of

Graphic Document Images

A dissertation submitted by Muhammad Muzzamil
Luqman at Universitat Autònoma de Barcelona to fulfil
the degree of Doctor of Philosophy.

Bellaterra, 2012.

Directors: Dr. Josep Llados
Professor
Autonoma University of Barcelona, Spain

Dr. Jean-Yves Ramel
Professor
François - Rabelais University of Tours, France

Co-director: Dr. Thierry Brouard
Assistant Professor
François - Rabelais University of Tours, France

This document was typeset by the author using LATEX2ε.

The research described in this book was carried out at the Computer Vision Center,
Universitat Autònoma de Barcelona and Computer Science Laboratory, Université
François - Rabelais de Tours.

Copyright c© 2012 by Muhammad Muzzamil Luqman. All rights reserved. No
part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the author.

I am thankful to Higher Education Commission1,
Government of Pakistan, for award of scholarship
under grant PD-2007-1/Overseas/FR/HEC/222, to pur-
sue my master’s and doctorate.

1http://www.hec.gov.pk/

Acknowledgments

Alhamdulilah.

I would like to present my foremost sincere gratitude to Professor Jean-Yves Ramel

and Professor Josep Llados. I passed a long journey under their kind supervision. All

credit for the successful completion of this thesis goes to their patient attitude, openness

to new ideas and the freedom that they provided me to carry out the research work at my

pace. Thank you very much Jean-Yves and Josep.

I am thankful to Dr. Thierry Brouard for his guidance during initial phase of the thesis

research and for his support during all important phases of the thesis work.

I am thankful to Professor Horste Bunke and Professor Jean-Marc Ogier for carefully

reading my dissertation and providing me very useful feedback.

I would also like to acknowledge the support of the administration staff of Computer

Science Laboratory of Tours and Computer Vision Center Barcelona for their assistance

and support during the course of my thesis research.

Thank you very much all my colleagues at Computer Science Laboratory of Tours and

Computer Vision Center Barcelona for your support and the wonderful years that I passed

among you.

Tons of thanks to my parents, brothers and sisters. Your love and moral support

actually made me successfully complete this important phase of my life.

Bundles of thanks to all my friends. I don’t want to miss any one and I will not cite

any names. But all of you are very dear to me and all of you helped me at various stages

to keep my moral high. You made me go through the crucial and difficult stages of my

thesis.

Abstract

Structural pattern recognition approaches o↵er the most expressive, convenient and
powerful but computational expensive representations of underlying relational information.
These representations can benefit from mature, less expensive and e�cient state-of-the-art
machine learning models of statistical pattern recognition, only after being mapped to a
low-dimensional vector space.

This thesis addresses the problem of lack of e�cient computational tools for graph based
structural pattern recognition approaches and proposes to exploit computational strength
of statistical pattern recognition. The contribution of this thesis is two-fold.

The first contribution of this thesis is a new method of explicit graph embedding. The
proposed graph embedding method exploits multilevel analysis of graph for extracting
graph level information, structural level information and elementary level information
from graphs. It embeds this information into a numeric feature vector. The method
employs fuzzy overlapping trapezoidal intervals for addressing the noise sensitivity of graph
representations and for minimizing the information loss while mapping from continuous
graph space to discrete vector space. The method has unsupervised learning abilities and
is capable of automatically adapting its parameters to underlying graph dataset.

The second contribution of this thesis is a framework for automatic indexing of graph
repositories for graph retrieval and subgraph spotting. This framework exploits explicit
graph embedding together with classification and clustering tools. It achieves the auto-
matic indexing of a graph repository during its o↵-line learning phase, where its extracts
the cliques of order 2 from graphs and embeds them into feature vectors by employing the
aforementioned explicit graph embedding technique. It clusters the feature vectors into
classes, learns a classifier and builds an index for the graph repository. During on-line spot-
ting phase, it extracts the cliques of order 2 from query graph, embeds them into feature
vectors and uses the index of the graph repository to retrieve the graphs from repository.
The framework does not require a labeled learning set and can be easily deployed to a
range of application domains, o↵ering ease of query by example (QBE) and granularity of
focused retrieval.

Experimentation on latest public graph datasets from International Association of Pattern

9

ABSTRACT

Recognition’s Technical Committee on graph-based representations (TC-15) evaluates the
power and applicability of our graph embedding framework for the problems of graph clas-
sification and graph clustering. A second set of experimentation evaluates the framework
for automatic indexing of graph repositories for graph retrieval and subgraph spotting.

Application to the real problems of recognition, indexing and retrieval of graphic document
images is also presented.

Keywords : Pattern recognition, graph clustering, graph classification, graph embed-
ding, subgraph spotting, fuzzy logic, graphics recognition.

10

Résumé

Cette thése aborde le probléme du manque de performance des outils exploitant des
représentations á base de graphes en reconnaissance des formes. Nous proposons de con-
tribuer aux nouvelles méthodes proposant de tirer partie, á la fois, de la richesse des
méthodes structurelles et de la rapidité des méthodes de reconnaissance de formes statis-
tiques.

Deux principales contributions sont présentées dans ce manuscrit.

La premiére correspond á la proposition d’une nouvelle méthode de projection explicite
de graphes procédant par analyse multi-facettes des graphes. Cette méthode e↵ectue une
caractérisation des graphes suivant di↵érents niveaux qui correspondent, selon nous, aux
point-clés des représentations á base de graphes. Il s’agit de capturer l’information portée
par un graphe au niveau global, au niveau structure et au niveau local ou élémentaire. Ces
informations capturées sont encapsulées dans un vecteur de caractéristiques numériques
employant des histogrammes flous. L’approche floue á base d’intervalles trapézodaux, per-
met de mieux appréhender la sensibilité aux bruits des représentations á base de graphes
et de réduire au minimum la déformation de l’information liée au positionnement ar-
bitraire des frontièrs lors du passage d’un espace continu á un espace vectoriel discret
choisi et utilisé pour décrire certaines caractéristiques des graphes. La méthode proposée
utilise, de plus, un mécanisme d’apprentissage non supervisée pour adapter automatique-
ment ses paramètres en fonction de la base de graphes á traiter sans nécessiter de phase
d’apprentissage préalable.

La deuxième contribution correspond á la mise en place d’une architecture pour l’indexation
de masses de graphes afin de permettre, par la suite, la recherche de sous-graphes présents
dans cette base. Cette architecture utilise la méthode précédente de projection explicite
de graphes appliquée sur toutes les cliques d’ordre 2 pouvant être extraites des graphes
présents dans la base á indexer afin de pouvoir les classifier. Un partitionnement des
cliques permet de constituer l’index qui sert de base á la description des graphes et donc á
leur indexation en ne nécessitant aucune base d’apprentissage pré-étiquetées. Cela procure
á cette méthode une généricité très forte et donc un déploiement facile. Lors de la phase de
recherche d’un sous-graphe dans la base pré-indexée, la réponse á la requête est formée de
l’ensemble des graphes contenant toutes les cliques d’ordre 2 obtenues par décomposition

11

RÉSUMÉ

de la requête. Enfin, le sous-graphe associé á la requête est repéré dans chacun des graphes
identifiés. La méthode proposée est applicable á de nombreux domaines, apportant la sou-
plesse d’un système de requête par l’exemple et la granularité des techniques d’extraction
ciblée (focused retrieval).

Des expérimentations sur les bases de graphes publiques récentes proposées par le TC15
de l’IAPR (groupe de rechercher sur les méthodes á base de graphes) sont présentées et
permettent d’évaluer les performances et l’applicabilité des propositions faites dans cette
thèse sur des problèmes de classification et de partitionnement de graphes. Un deuxième
jeu d’expérimentations présente les résultats obtenus par notre méthode d’indexation au-
tomatique de bases de graphes pour la recherche de sous-graphes.

Des exemples d’applications des approches proposées á des problèmes réels de reconnais-
sance, d’indexation et de repérage d’images de documents graphiques sont aussi présentés
tout au long du manuscrit.

Mots clés : Reconnaissance des formes, partitionnement de graphes, classification de
graphes, projection de graphes, repérage de sous-graphes, logique floue, reconnaissance de
graphiques.

12

Contents

Introduction 23

1 Definitions and notations 27

1.1 Introduction . 27

1.2 Terminology on graphs . 28

Graph . 28

Subgraph . 28

Clique . 29

Attributed Graph (AG) . 30

1.3 Important features of graphs . 31

Graph order . 31

Graph Size . 31

Node degree . 32

1.4 Representation and processing of graphs . 33

Adjacency matrix of a graph . 33

Laplacian matrix of a graph . 33

Graph matching and graph isomorphism 34

Subgraph isomorphism . 35

Maximum common subgraph (mcs) . 36

Median graph . 36

Graph edit distance (GED) . 36

Graph Embedding (GEM) . 37

Explicit Graph Embedding . 37

1.5 Graph retrieval and subgraph spotting . 38

13

CONTENTS

2 State of the art 39

2.1 Introduction . 39

2.1.1 Structural pattern recognition . 40

2.1.2 Statistical pattern recognition . 40

2.2 Graph representation of images . 42

2.2.1 Graph of pixels . 43

2.2.2 Graph of characteristic points . 44

2.2.3 Graph of primitives . 45

2.2.4 Region adjacency graph . 46

2.2.5 Conclusion . 47

2.3 Graph matching . 48

2.3.1 Exact graph matching and graph isomorphism 49

2.3.2 Error tolerant graph matching . 55

2.3.3 Distance between two graphs . 57

2.3.4 Graph embedding . 61

2.4 Fuzzy logic . 67

2.5 Limitations of existing methods and our contributions 71

3 Fuzzy Multilevel Graph Embedding 75

3.1 Introduction . 75

3.2 Overview of fuzzy multilevel graph embedding (FMGE) 78

3.2.1 Description of feature vector of FMGE 79

3.3 Framework of fuzzy multilevel graph embedding (FMGE) 88

3.3.1 Unsupervised learning phase . 88

3.3.2 Graph embedding phase . 94

3.4 Conclusion . 98

4 Graph retrieval and subgraph spotting through explicit graph embed-
ding 101

4.1 Introduction . 101

4.2 Automatic indexing of a graph repository 103

4.3 Subgraph spotting . 107

4.4 Conclusion . 112

14

CONTENTS

5 Experimentations 113

5.1 Introduction . 113

5.2 Graph databases . 114

5.3 Graph classification . 117

5.4 Graph clustering . 121

5.5 Graph retrieval and subgraph spotting . 128

5.6 Application of FMGE to graphics recognition 135

5.6.1 Representation phase . 136

5.6.2 Description phase (FMGE) . 137

5.6.3 Classifier learning phase . 138

5.6.4 Classification phase (graphic symbol recognition) 138

5.6.5 Symbols with vectorial and binary noise 140

5.6.6 Symbols with contextual noise . 142

5.6.7 Complexity of FMGE . 147

5.7 Conclusion . 148

6 Discussion and Conclusions 149

6.1 Discussion about FMGE . 149

6.1.1 Parameters . 149

6.1.2 Complexity . 152

6.2 Conclusions . 153

6.3 Future challenges . 155

Appendix 159

A Graph databases 159

A.1 IAM graph database repository . 159

A.1.1 Letter graphs . 159

A.1.2 GREC graphs . 161

A.1.3 Fingerprint graphs . 163

A.1.4 Mutagenicity graphs . 163

A.2 GEPR graphs . 165

15

CONTENTS

B Graphs representation of graphic document images 167

16

List of Tables

2.1 Defining operators for fuzzy sets. 69

5.1 IAM graph database details. 114

5.2 GEPR graph database details. 115

5.3 SESYD graph database details. 116

5.4 Experimental results (%), for graph classification on IAM graph database
repository. 120

5.5 Quality of k-means clustering for IAM graph database repository. 124

5.6 Performance indexes for GEPR graphs. 127

5.7 Results of symbol recognition experiments for vectorial and binary noise. . . 141

5.8 Results of symbol recognition experiments for context noise. 145

17

LIST OF TABLES

18

List of Figures

1.1 Example of a graph (left) and a subgraph (right). 29

1.2 Example of a clique in a graph. 29

1.3 Example of graph isomorphism. 34

1.4 Example of subgraph isomorphism. 35

2.1 Representation of an image by graph of pixels.1 43

2.2 Representation of an image by graph of characteristic points.1 44

2.3 Representation of a graphic symbol by graph of primitives. 45

2.4 Representation of graphics content by a region adjacency graph.1 46

2.5 Graph isomorphism through association graph.1 50

2.6 A graph and its adjacency matrices.1 . 52

2.7 Decision tree constructed from the adjacency matrices of two graphs G
1

and G
2

.1 . 53

2.8 A graph and a lexicon generated from a non-isomorphic graph network. . . 64

2.9 Example of fuzzy logic (temperature).1 . 67

2.10 Some shapes commonly employed for the membership function S(x).1 . . . 68

2.11 Pictorial illustration of operations on boolean and fuzzy logic.1 69

3.1 Attributed graph representation of basic geometric shapes of unit length. . 77

3.2 Overview of Fuzzy Multilevel Graph Embedding (FMGE). 78

3.3 The Fuzzy Structural Multilevel Feature Vector (FSMFV). 80

3.4 Embedding of structural level information. 81

3.5 Resemblance attributes for the attributed graph representation of basic ge-
ometric shapes of unit length. 85

3.6 Embedding of elementary level information. 86

19

LIST OF FIGURES

3.7 The unsupervised learning phase of FMGE. 88

3.8 Learning fuzzy intervals for an attribute i. 89

3.9 5 fuzzy overlapping trapezoidal intervals (s
i

) defined over 9 equally spaced
crisp intervals (n

i

). 90

3.10 The graph embedding phase of FMGE. 94

3.11 Histogram encoding of information and Fuzzy Structural Multilevel Feature
Vectors for the example attributed graphs. 97

4.1 Automatic indexing of a graph repository. 106

4.2 Illustration of score function computation for a subgraph around a clique
of order 2 in a retrieved graph. 110

4.3 Graph retrieval and subgraph spotting. 111

5.1 Number of clusters versus average Silhouette width for k-means clustering,
for IAM graph database repository. 123

5.2 Precision and recall plot for graph retrieval from SESYD graph database. . 130

5.3 A snapshot of retrieved results for a query image (single instance of query
symbol). 132

5.4 A snapshot of retrieved results for a query image (multiple instances of
query symbol). 133

5.5 Representing a graphic symbol image by an attributed graph. 136

5.6 FMGE embedding of an attributed graph of a graphic symbol. 137

5.7 Model symbol with deformations, used for simulating hand-drawn symbols. 140

5.8 Model symbol with degraded example, used to simulate photocopying /
printing / scanning. 140

5.9 An arm chair with 2 examples of each di↵erent level of contextual noise. . . 142

5.10 Model symbols from electronic drawings. 143

5.11 Model symbols from floor plans. 144

5.12 Time complexity of unsupervised learning phase of FMGE. 147

6.1 Bijective match of nodes of two graphs. 156

A.1 Prototypes of letters A to Z. 160

A.2 Instances of letter A at distortion level low. 160

A.3 Instances of letter A at distortion level medium. 160

A.4 Instances of letter A at distortion level high. 160

20

LIST OF FIGURES

A.5 The prototype images of the 22 GREC classes. 162

A.6 The five distortion levels (bottom to top) applied to three sample images. . 162

A.7 Fingerprint examples from the Galton-Henry class Arch. 164

A.8 Fingerprint examples from the Galton-Henry class Left loop. 164

A.9 Fingerprint examples from the Galton-Henry class Right loop. 164

A.10 Fingerprint examples from the Galton-Henry class Whorl. 164

A.11 Some examples of the images in the ALOI database. 166

A.12 Some examples of the images in the COIL database. 166

A.13 Some examples of the images in the ODBK database. 166

B.1 Representing graphic content by an attributed graph. 168

B.2 An example architectural floor plan image from SESYD dataset. 169

B.3 An example electronic diagram image from SESYD dataset. 170

B.4 An arm chair with 2 examples of each di↵erent level of contextual noise. . . 170

21

LIST OF FIGURES

22

Introduction

A
bility to recognize patterns is among the most crucial capabilities of human beings for
their survival, which enables them to employ their sophisticated neural and cognitive

systems [Duda et al., 2000], for processing complex audio, visual, smell, touch and taste
signals. Man is the most complex and the best existing system of pattern recognition.
Without any explicit thinking, we continuously compare, classify and identify huge amount
of signally data everyday [Kuncheva, 2004], start from the time we get up in the morning
till the last second we fall asleep. This includes recognizing the face of a friend in a crowd,
a spoken word embedded in noise, the proper key to lock the door, smell of co↵ee, the
voice of a favorite singer, the recognition of alphabetic characters and millions of more
tasks that we perform on regular basis.

The scientific domains of artificial intelligence (AI) and pattern recognition (PR) can
be seen as the transportation of the human capability of analyzing - to compare, to classify
and to identify - the audio and visual signals, to computers. So that computers may assist
humans for pattern recognition tasks and to replace humans for some of them.

Pattern recognition has emerged as an important research domain and has supported
the development of numerous applications in many di↵erent areas of activity. Robot
assisted manufacture, medical diagnostic systems, forecast of economic variables, explo-
ration of earth resources, analysis of satellite data, face detection, verification and recogni-
tion, object detection and recognition, handwritten digit and character recognition, speech
and speaker verification and recognition, information and image retrieval, text detection
and categorization, gender classification and prediction ([Byun, 2003], [De Sa, 2001] and
[Friedman and Kandel, 1999]), being some of the important to mention.

The problems of pattern recognition are often very complex and it is nearly impossible
to write an explicitly programmed solution for them. For example it is impossible to write
an analytical program for recognizing a face in a photo [Shawe-Taylor and Cristianini, 2004].
The pattern recognition research community has overcome this problem by adapting a
learning methodology which is highly inspired by human ability to learn. A learning
methodology refers to the approach where instead of precisely defining a set of specifi-
cations for solving a problem analytically, the machine is trained on data and it learns
the concept of a class by discriminating between groups of similar objects. Based on the

23

INTRODUCTION

inferred rules and learning performed during training, the machine is able to make pre-
dictions about new and unseen data. More formally, the machine acquires generalization
power through learning [Riesen, 2010].

A pattern recognition task for computers can be looked upon as consisting of two main
steps - (i) the representation of the signal data by a data structure and (ii) the computation
of desired operation (pattern recognition). The two important sub domains of pattern
recognition - the structural pattern recognition and the statistical pattern recognition -
each have its strength only in one of the two aforementioned steps, respectively.

The structural pattern recognition o↵ers the most powerful relational data structure of
graph. For the last three decades, graphs have been used for pattern recognition and image
analysis, for extracting and representing complex relations in underlying data. However,
there is still a lack of e�cient computational tools and learning models which can process
this data structure.

On the other side, the statistical pattern recognition o↵ers highly e�cient computa-
tional models of machine learning, classification and clustering, by employing the well
established theory of statistics. But these computational models can work only on simple
numeric vectors and can not process complex high dimensional relational data structures.

Over decades of parallel research in both of these sub domains of pattern recognition
- structural and statistical pattern recognition - powerful representations and e�cient
computational models have been built. But little progress has been made towards the
long desired objective (of research in pattern recognition), to join the advantages of the
structural and statistical pattern recognition approaches for building more powerful and
e�cient algorithms.

This thesis is a step forward to achieve this objective of joining the advantages of struc-
tural and statistical pattern recognition approaches. We propose an algorithm which per-
mits the pattern recognition applications to employ the powerful relational data structure
of attributed graphs along with the computational strengths of state of the art statistical
models of machine learning, classification and clustering.

24

INTRODUCTION

The contribution of this thesis is two-fold.

The first contribution of this thesis is a new method of explicit graph embedding. The
proposed graph embedding method exploits multilevel analysis of graph for extracting
graph level information, structural level information and elementary level information
from graphs. It embeds this information into a numeric feature vector. The method
employs fuzzy overlapping trapezoidal intervals for addressing the noise sensitivity of graph
representations and for minimizing the information loss while mapping from continuous
graph space to discrete vector space. The method has unsupervised learning abilities and
is capable of automatically adapting its parameters to underlying graph dataset.

The second contribution of this thesis is a framework for automatic indexing of graph
repositories for graph retrieval and subgraph spotting. This framework exploits explicit
graph embedding together with classification and clustering tools. It achieves the auto-
matic indexing of a graph repository during its o↵-line learning phase, where its extracts
the cliques of order 2 from graphs and embeds them into feature vectors by employing the
aforementioned explicit graph embedding technique. It clusters the feature vectors into
classes, learns a classifier and builds an index for the graph repository. During on-line spot-
ting phase, it extracts the cliques of order 2 from query graph, embeds them into feature
vectors and uses the index of the graph repository to retrieve the graphs from repository.
The framework does not require a labeled learning set and can be easily deployed to a
range of application domains, o↵ering ease of query by example (QBE) and granularity of
focused retrieval.

25

INTRODUCTION

The dissertation is organized in six chapters and two appendices. A brief introduction
to the contents of each chapter is given below:

In chapter 1 we present important definitions and concepts and we formalize the no-
tations that have been used in this dissertation.

In chapter 2 we present a literature review on state of the art of structural pattern
recognition, statistical pattern recognition, graph representation of images, exact graph
matching, graph isomorphism, subgraph isomorphism, error tolerant graph matching, dis-
tance between graphs, graph embedding, graph classification and fuzzy logic. We summa-
rize the important contributions of our work in light of the limitations of existing methods.

In chapter 3 we outline our explicit graph embedding method i.e. the Fuzzy Multilevel
Graph Embedding (FMGE). We first present an overall global description of FMGE and
then present details on the FMGE framework. We conclude this chapter by introducing
the application of FMGE to graph classification, graph clustering and graph retrieval.

In chapter 4 we present a framework for automatic indexing of attributed graph repos-
itories. We demonstrate a practical application of Fuzzy Multilevel Graph Embedding
(FMGE) together with classification and clustering tools, for achieving graph retrieval
and subgraph spotting.

In chapter 5 we present the experimental evaluations of FMGE for the problems of
graph clustering and graph classification. We present the experimental evaluations of the
framework for automatic indexing of graph repositories for graph retrieval and subgraph
spotting, with an application to content spotting in graphic document image repositories.
We provide experimental results for the application of the thesis work to the real problems
of recognition, indexing and retrieval of graphic document images.

In chapter 6 we present a discussion on the presented work. We highlight the im-
provements of the proposed method which should be further studied and conclude this
dissertation. We point out the possible lines of future research.

In appendix A we provide details on the graph databases used in this thesis.

In appendix B we provide details on the graph repository extracted from electronic
diagrams and architectural floor plans document images.

26

Chapter 1

Definitions and notations

In this chapter we present important definitions and concepts and we formalize the nota-
tions that have been used in this dissertation.

1.1 Introduction

This chapter presents important definitions and concepts adapted to the way we have
used them and to the vocabulary of this dissertation. We first define the terms which are
used throughout the dissertation. These include graph, subgraph, clique and attributed
graph. This is followed by a section on defining important features of graphs and a section
introducing important concepts on representation and processing of graphs. Along with
presenting the definitions, in the meantime we also formalize the notations for facilitating
the understanding of the work presented in upcoming chapters of the dissertation.

27

1.2. TERMINOLOGY ON GRAPHS

1.2 Terminology on graphs

Definition 1: Graph

Let V denote the set of vertices and E denote the set of edges. A graph G is a set of
vertices (V) connected by edges (E). It is given by the ordered pair:

G = (V (G), E(G))

where,

V (G) is the set of vertices in graph G and

E(G) is a set of 2 element subsets of V(G), given by:
E ✓ {{u, v} : u, v 2 V (G)}

For a directed graph, the ordered pair (u, v) represents an edge from vertex u to
vertex v. Where as, for an undirected graph it represents an edge between vertex u
and vertex v without signifying any direction.

Definition 2: Subgraph

A graph subG = (V (subG), E(subG)) is called a subgraph of a graphG = (V (G), E(G))
if it contains no vertices or edges that are not in graph G.

Mathematically,

V (subG) ✓ V (G) and

E (subG) ✓ E (G)

Figure 1.1 shows a subgraph in a graph.

28

1.2. TERMINOLOGY ON GRAPHS

Figure 1.1: Example of a graph (left) and a subgraph (right).

Definition 3: Clique

A clique in an undirected graph G is a subset of its vertices V (G) such that each pair
of vertices in the subset is connected by an edge. Figure 1.2 shows a clique (represented
by {d, e, h}) in a graph.

Figure 1.2: Example of a clique in a graph.

A maximum clique is a clique of the largest possible size in a given graph. The clique
number of a graph is the number of vertices in its maximum clique.

29

1.2. TERMINOLOGY ON GRAPHS

Definition 4: Attributed Graph (AG)

Let A
V

and A
E

denote the domains of possible values for attributed vertices and edges
respectively. These domains are assumed to include a special value that represents a null
value of a vertex or an edge. An attributed graph AG over (A

V

, A
E

) is defined to be a
four-tuple:

AG = (V,E, µV , µE)

where,

V is a set of vertices,

E ✓ V ⇥ V is a set of edges,

µV : V �! Ak

V

is function assigning k attributes to vertices and

µE : E �! Al

E

is a function assigning l attributes to edges.

In this dissertation we use the term attributed graph to refer to an undirected at-
tributed graph, unless otherwise explicitly specified.

30

1.3. IMPORTANT FEATURES OF GRAPHS

1.3 Important features of graphs

We present the definitions in this section in terms of attributed graphs, as we have
used them in this dissertation. However, these definitions are equally applicable to graphs
in general.

Definition 5: Graph order

The order of an attributed graph AG = (V,E, µV , µE) is given by |V | i.e. the number
of vertices in AG.

Let AG
1

and AG
2

be two attributed graphs, then:

AG
1

is smaller than AG
2

i↵ |V
1

| < |V
2

|

AG
1

and AG
2

are equal ordered i↵ |V
1

| = |V
2

|

AG
1

is larger than AG
2

i↵ |V
1

| > |V
2

|

Definition 6: Graph Size

The size of an attributed graph AG = (V,E, µV , µE) is given by |E| i.e. the number
of edges in AG.

Let AG
1

and AG
2

be two attributed graphs, then:

AG
1

is thinner than AG
2

i↵ |E
1

| < |E
2

|

AG
1

and AG
2

are equal sized i↵ |E
1

| = |E
2

|

AG
1

is thicker than AG
2

i↵ |E
1

| > |E
2

|

31

1.3. IMPORTANT FEATURES OF GRAPHS

Definition 7: Node Degree

The degree of a (vertex or) node V
i

in graph AG = (V,E, µV , µE) refers to the number
of edges connected to V

i

.

If AG is a directed graph then each of its nodes has an in-degree and an out-degree
associated to it. The in-degree refers to the number of incoming edges and out-degree
refers to the number of outgoing edges for a node.

Generally, the terms densely connected graph and sparsely connected graph are used
for abstractly categorizing a graph on the basis of its node degrees.

32

1.4. REPRESENTATION AND PROCESSING OF GRAPHS

1.4 Representation and processing of graphs

The most simple and generic data structure used for representation of graphs is a set
of nodes and a set of edges (each linking a pair of nodes together). However because of
its ease of manipulation and computation, the widely used representation of a graph is
by an adjacency matrix. An adjacency matrix of a graph is a square matrix having size
of the graph order. The coe�cients of the matrix are boolean values - representing the
existence of an edge between the two corresponding nodes (represented by indexes of the
square matrix) in the graph.

Generally, lists are used for storing the attributes of nodes and edges of graph.

Definition 8: Adjacency matrix of a graph

Let G = (V (G), E(G)) be a graph of order n = |V (G)|. The adjacency matrix A of
graph G has the size of n⇥ n. The coe�cients of the matrix are given as:

A
ij

=

����
1 an edge exists between vertex i and vertex j
0 otherwise

����

The adjacency matrix of an undirected graph is a symmetric matrix.

Definition 8: Laplacian matrix of a graph

Let G = (V (G), E(G)) be a graph of order n = |V (G)|. The Laplacian matrix L of
graph G has the size of n⇥ n. The coe�cients of the matrix are given as:

A
ij

=

������

|v
i

| if i = j
�1 if i6= j and an edge exists between vertex i and j
0 otherwise

������

33

1.4. REPRESENTATION AND PROCESSING OF GRAPHS

Definition 9: Exact graph matching and graph isomorphism

Let G
1

= (V (G
1

), E(G
1

)) and G
2

= (V (G
2

), E(G
2

)) be two graphs. Exact graph
matching problem is to find a one-to-one mapping:

f : V (G
2

) �! V (G
1

)

such that:

(u, v) 2 E(G
2

) i↵ (f(u), f(v)) 2 E(G
1

)

If such a mapping f exists, G
1

is called isomorphic to G
2

and the phenomenon is called
graph isomorphism.

Figure 1.3 shows an example of graph isomorphism.

Figure 1.3: Example of graph isomorphism.

Graph isomorphism is reflexive, symmetric and transitive.

34

1.4. REPRESENTATION AND PROCESSING OF GRAPHS

Definition 10: Subgraph isomorphism

Let G
1

= (V (G
1

), E(G
1

)) and G
2

= (V (G
2

), E(G
2

)) be two graphs, such that:

V (G
2

) ⇢ V (G
1

) and

E(G
2

) ⇢ E(G
1

)

Subgraph isomorphism refers to the problem to find a mapping between G
1

and G
2

,
as given by:

f 0 : V (G
2

) �! V (G
1

)

such that:

(u, v) 2 E(G
2

) i↵ (f 0(u), f 0(v)) 2 E(G
1

)

If such a mapping f 0 exists, there exists a subgraph isomorphism from G
1

to G
2

.

Figure 1.4 shows an example of subgraph isomorphism.

Figure 1.4: Example of subgraph isomorphism.

35

1.4. REPRESENTATION AND PROCESSING OF GRAPHS

Definition 11: Maximum common subgraph (mcs)

Let G
1

= (V (G
1

), E(G
1

)) and G
2

= (V (G
2

), E(G
2

)) be two graphs.

A graph G = (V (G), E(G)) is said to be a common subgraph of G
1

and G
2

if there exist
subgraph isomorphism from G to G

1

and from G to G
2

. The largest common subgraph
(w.r.t. graph order i.e. |V (G)|) is called the maximum common subgraph of G

1

and G
2

.

Definition 12: Median graph

A median graph of a collection of graphs C is a graph m that minimizes the sum of
distances to all other graphs in this collection. Mathematically,

m = argmin
g12C

X

g22C
d{g

1

, g
2

}

where,

d{g
1

, g
2

} is represents the distance between graph g
1

and graph g
2

.

A commonly used distance measure in graph domain is the graph edit distance.

Definition 13: Graph edit distance (GED)

Let g
1

= (V (g
1

), E(g
1

)) and g
2

= (V (g
2

), E(g
2

)) be two graphs. The graph edit
distance between g

1

and g
2

is defined as:

d(g
1

, g
2

) = min
(e1,...,e

k

)2�(g1,g2)

kX

i=1

c(e
i

)

where,

�(g
1

, g
2

) denotes the set of edit paths transforming g
1

into g
2

and

c denotes the cost function measuring the strength c(e
i

) of edit operation e
i

.
The edit operations include e.g. addition of node/edge and deletion of node/edge.

36

1.4. REPRESENTATION AND PROCESSING OF GRAPHS

We will describe graph edit distance in further details, while reviewing the state of the
art in Chapter 2 (Section 2.3.3.1).

Definition 14: Graph Embedding (GEM)

Graph Embedding is a methodology aimed at representing a whole graph (with at-
tributes attached to its nodes and edges) as a point in a suitable vector space; preserving
the similarity/distance between the graphs that have been embedded i.e. the more two
graphs are considered similar, the closer should be the corresponding points in the vector
space.

Definition 15: Explicit Graph Embedding

Explicit graph embedding maps a graph to a point in suitable vector space. It encodes
the graphs by equal size vectors and produces one vector per graph.

Mathematically, for a given graph AG = (V,E, µV , µE), explicit graph embedding is
a function �, which maps graph AG from graph space G to a point (f

1

, f
2

, ..., f
n

) in n
dimensional vector space Rn. It is given as:

� : G �! Rn

AG 7�! �(AG) = (f
1

, f
2

, ..., f
n

)

The main contribution of the thesis work is a method of explicit graph embedding.

37

1.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

1.5 Graph retrieval and subgraph spotting

Graph retrieval deals with retrieving a graph G from a graph repository, based on the
similarity of graph G with an example (or query) graph.

Subgraph spotting takes the definition of graph retrieval to further granularity. Based
on the similarity of a subgraph in G with the example (or query) graph, subgraph spotting
refers to retrieving graph G from graph repository.

The second contribution of the thesis work concerns these research fields.

38

Chapter 2

State of the art

In this chapter we present a literature review on state of the art of structural pattern
recognition, statistical pattern recognition, graph representation of images, exact graph
matching, graph isomorphism, subgraph isomorphism, error tolerant graph matching, dis-
tance between graphs, graph embedding, graph classification and fuzzy logic. We summa-
rize the important contributions of our work in light of the limitations of existing methods.

2.1 Introduction

Pattern recognition has emerged as an important research domain and has supported
the development of numerous applications in many di↵erent areas of activity [De Sa, 2001]
and [Friedman and Kandel, 1999]. The methods for pattern recognition are broadly cat-
egorized as statistical, structural or syntactic approaches [Bunke et al., 2001]. The sta-
tistical approaches are characterized by the use of numeric feature vectors, the structural
approaches by the use of symbolic data structures and the syntactic approaches are char-
acterized by the use of grammars. These three categories of methods have their own
advantages and limitations.

This dissertation lies at the frontiers of the structural and statistical pattern recogni-
tion. Before proceeding with an in-depth review of state of the art on interesting topics for
the work presented in the dissertation, we first briefly introduce the two aforementioned
categories of pattern recognition.

39

2.1. INTRODUCTION

The presentation of state of the art on graph matching and graph embedding is inspired
by the PhD dissertations of [Qureshi, 2008] and [Sidère, 2012], respectively.

2.1.1 Structural pattern recognition

Structural pattern recognition is characterized by the utilization of symbolic data struc-
tures. The widely used symbolic data structures are graphs, strings and trees. Overtime
the use of graph representations has become very popular in structural pattern recogni-
tion. This is because of the fact that both strings and trees are special instances of graphs
[Bunke and Riesen, 2011b]. Thus we can safely term graphs to be the representative of
symbolic data structures.

Graph based representations have their application to a wide range of domains, as
graphs provide a convenient and powerful representation of relational information. They
are able to represent not only the values of both symbolic and numeric properties of an
object, but can also explicitly model the spatial, temporal and conceptual relations that
exist between its parts. Graph do not su↵er from the constraint of fixed dimensionality. For
example the number of nodes and edges in a graph is not limited a priori and depends on
the size and the complexity of the actual object to be modeled [Riesen and Bunke, 2009].
The most important advantage that graphs have is that they have foundations in strong
mathematical formulation and have a mature theory at their basis.

However, along with the various advantages of graphs they have a serious drawback.
Graph based representations are computational expensive. The much needed operations
of graph matching and graph isomorphism are NP-complete.

A second serious drawback of graphs is that they are sensitive to noise.

We recommend [Riesen and Bunke, 2009], [Conte et al., 2004], [Bunke et al., 2005],
[Bunke and Riesen, 2011b] and [Shokoufandeh et al., 2005] for an in-depth reading on
structural pattern recognition.

2.1.2 Statistical pattern recognition

Statistical pattern recognition is characterized by the utilization of numeric feature
vectors. The feature vectors are very basic representations. A very important advantage
of these representations is that because of their simple structure, the basic operations
that are needed in machine learning can easily be executed on them. This makes a large
number of mature algorithms for pattern analysis and classification immediately available
to statistical pattern recognition. And as a result of this fact, the statistical pattern
recognition o↵ers state of the art computational e�cient tools of learning, classification

40

2.1. INTRODUCTION

and clustering.

However, feature vector based representations have associated representational limita-
tions. These limitations arise from their simple structure and the fact that feature vectors
have same length and structure regardless of the complexity of object to be modeled
[Ferrer et al., 2010].

We recommend [Duda et al., 2000] for a more detailed reading on statistical pattern
recognition and classification.

41

2.2. GRAPH REPRESENTATION OF IMAGES

2.2 Graph representation of images

Graph based structural pattern recognition representations are widely and successfully
employed for image analysis and pattern recognition, at-least for the last 3 decades. Among
the first few works using graphs for pattern recognition, the work of [Pavlidis, 1972] was
based on the representation of topological properties of polygonal shapes by labeled graphs.

However, the problems of graph matching, graph isomorphism, maximum common
subgraph and computation of edit distance between two graphs, which are very useful for
pattern recognition, requires exponential computation time and are NP-complete.

Another important issue for pattern recognition with graph representations is their
sensitivity to noise. As a result of noise and distortions in images, some variability in
structural representation of di↵erent instances of same object may occur.

This makes it very important to increase their robustness against noise and distortions
along with increasing computational strength of graph based representations of image
content for pattern recognition.

Generally, graph representations of images are obtained by defining the image contents
by using a set of primitives. These primitives form the vertices of the graph and the
binary relations of compatibility between the primitives define the edges of the graph.
The attributes of the graph (if any) represent the properties of the primitives and their
compatibility relations in underlying image.

In this section we present some common graph based methods used in pattern recog-
nition and image analysis with a focus on graphics recognition.

42

2.2. GRAPH REPRESENTATION OF IMAGES

2.2.1 Graph of pixels

The graph of pixels is the classical representation of image content. The graph is
constructed by representing each pixel by a vertex. The 4-connectivity or 8-connectivity
of pixels defines the edges of graph.

Figure 2.1 shows an example for representation of an image of a character by graph
of pixels, as used by [Franco et al., 2003] for character recognition and graphic symbol
recognition.

Figure 2.1: Representation of an image by graph of pixels.1

Graph of pixels is a mere change of representation of data and does not attempt to
extract information from the image. The size of these graphs is often large. The compu-
tational limitation of classical graph processing algorithms prohibits the use of graph of
pixels representation of images for real problems.

1Image from [Qureshi, 2008]

43

2.2. GRAPH REPRESENTATION OF IMAGES

2.2.2 Graph of characteristic points

The graph of characteristic points can be seen as an extension to graph of pixels. They
use only certain characteristic points in the image. A very common method to extract
graph of characteristic points for object images is to first skeletonize the main parts of the
object and then represent endpoints and junctions as vertices. The branches of skeleton
between the endpoints and junctions define the edges between vertices of the graph.

Figure 2.2 shows an example for representation of an object by graph of characteristic
points, as used by [Brunner and Brunnett, 2004] for 3D mesh segmentation and pattern
recognition.

Figure 2.2: Representation of an image by graph of characteristic points.1

The methods for skeletonizing are not very computational expensive. However, skele-
tonizing of an image is not stable as the information in small segments may not necessarily
be very representative of the image - considering the bigger aggregate.

1Image from [Qureshi, 2008]

44

2.2. GRAPH REPRESENTATION OF IMAGES

2.2.3 Graph of primitives

Graph of primitives are based on more higher level of information than pixels or charac-
teristic points, called primitives. Graph representation of image is achieved by representing
the primitives in image as vertices of graph and the topological relationships between them
as edges.

Figure 2.3 shows an example for representation of a graphic symbol by graph of prim-
itives, as proposed by [Qureshi et al., 2007]. The image is vectorized to obtain a set of
vectors (lines). The vectors are represented as vertices in graph and their topological
relationships define the edges of the graph.

Figure 2.3: Representation of a graphic symbol by graph of primitives.

45

2.2. GRAPH REPRESENTATION OF IMAGES

2.2.4 Region adjacency graph

Region adjacency graph represent the contents of an image by topology in which the
contextual relationships are very important. Graph representation of an image is achieved
by segmenting the image into a limited number of regions, such that each region represents
the pixels that compose it. These regions are represented by vertices of the graph and the
neighborhood relations between them define the edges of the graph.

Figure 2.4 shows an example of a region adjacency graph, as defined by [Ramel, 1992].

Figure 2.4: Representation of graphics content by a region adjacency graph.1

1Image from [Ramel, 1992]

46

2.2. GRAPH REPRESENTATION OF IMAGES

2.2.5 Conclusion

Many other graph representations of images exists in literature. An exhaustive review
of these graphs representations is not interesting for this dissertation, and thus we have
discussed only the common graph representations which are used for pattern recognition.

The choice of the representation is very important for the genericity of the final system.
The selection of attributes to be associated to the nodes and edges is a very important
issue and it greatly influences performance of the tools that are eventually used to process
and analyze the graphs. These attributes raise many computational constraints, which
prohibit the use of classical methods from graph theory.

A important di↵erence between the graphs used in pattern recognition for representing
images, and the graphs used in other fields (for example the classical operational research
dealing with problems of shortest path, graph coloring and graph partitioning etc.), is that
in pattern recognition for representing various properties of the pixels regions in images,
there is a necessity of both symbolic and numeric attributes on nodes and edges of the
graphs.

Furthermore, in pattern recognition and image analysis, we often have a huge collection
of graphs for representing the underlying data, which are often deformed by the noise in the
data. These graphs, including the deformed ones, have to be compared for determining
classes in data. This makes graph matching the most important operation for graph
based pattern recognition and image analysis. In next section we outline some important
methods of graph matching used for pattern recognition.

47

2.3. GRAPH MATCHING

2.3 Graph matching

Graph based pattern recognition provides two very important advantages over statisti-
cal pattern recognition. These methods are flexible to adapt to underlying data and they
have the representation power to model the spatial, temporal and conceptual relations in
data. However, the much needed operation of graph comparison (i.e. determining if two
graphs represent the objects in same class), is not simple and is computationally expensive.

The first works on graph matching, such as [Winston, 1970], [Pavlidis, 1972] or
[Fischler and Elschlager, 1973], used exact algorithms. These graph matching algorithms
are non tolerant to variations and try to find a exact match between two graphs. However,
the recent works in literature, such as [Riesen et al., 2007] or [Solnon, 2010], more often
employ the error tolerant versions of graph matching algorithms. The use of error tolerant
algorithms permits to handle the variations between object of same class.

In this section we summarize the most representative techniques of graph matching for
image processing and pattern recognition. For a comprehensive reading on the former, we
recommend the reading of the classical reference [Conte et al., 2004] and the recent state
of the art review in [Bunke and Riesen, 2011b].

Graph matching methods for pattern recognition are divided into several categories.
An exhaustive review of all the methods is not possible in this dissertation. In this section
we will only review the interesting methods for better placing our work w.r.t. the existing
works in literature.

The first category of graph matching methods is the exact graph matching. This type
of graph matching tries to find an exact match between the corresponding substructures
of two graphs under consideration.

The second category of graph matching methods introduces some flexibility and toler-
ance to variations and is called error-tolerant graph matching. This type of graph matching
considers the fact that some variations in graphs may occur as a result of noise in under-
lying data.

The third category of graph matching methods, discussed in this section, take boolean
graph matching (i.e. aforementioned categories) one step forward and quantify the sim-
ilarity between graphs. This type of graph matching defines a distance between graphs,
for measuring the similarity between them.

The fourth category of graph matching methods, answers the computational complexity
of distance based methods of graph matching. This type of graph matching embeds the
graphs into feature vectors and exploits the computational strength of feature vector based
statistical pattern recognition.

48

2.3. GRAPH MATCHING

2.3.1 Exact graph matching and graph isomorphism

Formal definitions of the exact graph matching and graph isomorphism have been
provided in Section 1.4 of the dissertation.

The exact graph matching algorithms tries to find a mapping between the nodes of two
graphs, between their edges and between their labeling functions. The nodes and edges in a
graph have no order associated to them. This makes the problem of exact graph matching
more di�cult and normally brute force approach is used to map the nodes, edges and
labeling function of one graph to those of the other. The exact graph matching algorithms
tries to find an isomorphism between graphs or between subgraphs (of two graphs). These
methods are based on the use of a search tree with backtracking or are based on the use
of adjacency matrix of graph for finding isomorphism between two graphs. Like all exact
methods, these methods share the problem of combinatorial search space explosion - at
worst exact graph matching algorithms are NP complete.

Graph isomorphism can be considered as the concept of formal equality of graphs.
A related concept to graph isomorphism is the subgraph isomorphism, which could be
considered as the concept of formal equality of subgraphs. The definition of subgraph
isomorphism is given in Section 1.4 of the dissertation.

The algorithm presented in [Reingold et al., 1997] determines the exact isomorphism
between two graphs by combinatorics. In a brute force manner, it finds and tests all the
mapping functions f for isomorphism between the two graphs. In worst case this search
requires n! functions to be generated (n being the size of the graph). The complexity
of this algorithm is considered to be in class NP [Garey and Johnson, 1979], there is no
algorithm to solve it in polynomial time (P) and its membership in class NP-complete
is not yet demonstrated [Köbler et al., 1993]. However, subgraph isomorphism has been
shown to be in NP-complete [Read and Corneil, 1977]. The literature therefore focuses on
reducing the complexity of graph isomorphism.

Below we introduce some of the methods for resolving the problem of graph isomor-
phism.

2.3.1.1 Graph isomorphism through association graphs

[Messmer, 1995] has proposed a method to find isomorphism between two graphs by
employing an association graph. To find isomorphism between two graphs, an association
graph is constructed from these two graphs. The total number of nodes in association
graph is equal to the product of the number of nodes in given graphs. Each node in
association graph is represented by a pair of nodes from the given graphs. The arcs
between the nodes of the association graph are drawn according to following criteria; draw

49

2.3. GRAPH MATCHING

an arc in association graph if there are arcs between both the pairs in original graphs or if
there aren’t any arcs between both the pairs in original graphs. Each clique of association
graph corresponds to a subgraph isomorphism. We find the maximum clique in association
graph to find the largest common sub graph between two given graphs. This method can
have a complexity of O((nm)n), where n and m are the number of nodes of two graphs.

An illustration of this method is shown in Figure 2.5.

(a) Two graphs G
M

and G
D

.

(b) Association graph for G
M

and G
D

. The cliques are marked with a green and a red triangle in
association graph.

Figure 2.5: Graph isomorphism through association graph.1

1Image from [Qureshi, 2008]

50

2.3. GRAPH MATCHING

2.3.1.2 Method based on decision trees

Decision trees have been employed for graph mapping by [Corneil and Gotlie, 1970].
To find a mapping between two graphs G

M

and G
D

; each node of G
D

is iteratively mapped
to the nodes of the G

M

, provided that the structure of the arcs of the G
D

is preserved.
Thus if the two graphs have same number of nodes and if all the nodes of the two graphs are
mapped, then there exists an isomorphism between them. This method is based on brute
force or exhaustive search and has a complexity of O(N4). [Ullman, 1976] has improved
this method by introducing backtracking and a procedure of forward checking for reducing
the search space.

2.3.1.3 Method based on ordered graphs

[Jiang and Bunke, 1999] have proposed a graph isomorphism method based on ordered
graphs. In this method, first the original graph is transformed to an Eulers Graph. Then
by using Eulers circuit a code (string) is generated for each graph. The isomorphism
between given two graphs can then be found by using a simple algorithm on these codes.
This method solves the isomorphism problem in quadratic time to the number of nodes of
graphs.

2.3.1.4 Method based on decision trees and adjacency matrix

[Messmer, 1995] has also proposed a method based on the use of decision trees and ad-
jacency matrices for finding isomorphism between two graphs or their sub graphs. Di↵erent
permutations of the adjacency matrix are generated for each graph. Then a decision tree
is generated from these adjacency matrices. This method solves the isomorphism problem
in quadratic time to the number of nodes of graphs.

Figure 2.6 shows a graph and di↵erent permutations of its adjacency matrices. And
Figure 2.7 illustrates the graph isomorphism method of [Messmer, 1995].

51

2.3. GRAPH MATCHING

(a) Graph.

(b) Adjacency matrices.

Figure 2.6: A graph and its adjacency matrices.1

1Image from [Qureshi, 2008]

52

2.3. GRAPH MATCHING

(a) Graphs.

(b) Adjacency matrices G1.

(c) Adjacency matrices G2.

(d) Decision tree.

Figure 2.7: Decision tree constructed from the adjacency matrices of two graphs G
1

and
G

2

.1

1Image from [Qureshi, 2008]

53

2.3. GRAPH MATCHING

2.3.1.5 Methods based on decomposition of graphs

[Sonbaty and Ismail, 1998] have proposed a method of graph isomorphism based on
decomposition of graphs. The idea behind these methods is to decompose the graph into
several small graphs, which are named Basic Attributed Relational Graphs (BARG). One
BARG is generated for each node of the original graph. The BARG of a node X has
node X as root node and the nodes which are directly connected to X in original graph as
direct children of root. The problem of graph mapping is, in this way, reduced to mapping
between the BARG. A matrix of graph edit distances is constructed by computing distance
between every pair of BARGs. The distance between two BARGs is computed on basis
of the number of basic operations required for converting one to other (e.g. addition
of node/edge, deletion of node/edge). The complexity of the algorithm is O(m2 ⇤ n2),
where m and n are the number of nodes of two graphs. Another algorithm under this
category decomposes the graphs repeatedly into subgraphs to obtain small parts, which
are composed of a single node. A hierarchical structure is constructed from these small
parts. The isomorphism can then be found incrementally, by progressively traversing this
hierarchical structure of sub graphs.

54

2.3. GRAPH MATCHING

2.3.2 Error tolerant graph matching

In certain applications, the representation of an object by graph can slightly fluctuate
because of noise and distortion in images. It therefore becomes necessary to introduce an
error model or to integrate the concept of tolerance during the mapping of the graphs.
Thus, the term “error tolerant” applied to certain problems of graph matching means that
it is not always possible to find an isomorphism between the two graphs. This can arise in
cases where the number of nodes is di↵erent in the two graphs. Consequently, the problem
of graph matching no longer remains the problem of finding an exact match but finding
the similarity between graphs.

2.3.2.1 Method based on decision trees

[Messmer and Bunke, 1998] have adapted their method of graph isomorphism
[Messmer, 1995], to achieve error tolerant graph matching. They have envisaged the cor-
rection of errors during the creation of decision tree. For each model graph, examples
with distortions are generated and compiled in the decision tree. The number of examples
depends upon the maximum acceptable error. During the matching (recognition), the
decision tree is used in a traditional way.

The complexity of execution time of this process remains quadratic compared to the
number of nodes in the query graph. However, the size of the decision tree increases
exponentially with the number of nodes in the model graphs and thus depends much on
the envisaged degree of deformations. Consequently, this approach is limited to the graphs
of very small size. Moreover, it is very di�cult to envisage the types of errors which will
occur in the real cases.

In a second approach in [Messmer and Bunke, 1998], the corrections of errors are con-
sidered during a later stage. The decision tree representing the whole of model graphs does
not incorporate any information about the possible errors. It is, in fact, the query graph
which is transformed to produce a set of deformed copies of the graph. Each graph is then
classified by the decision tree. Execution time complexity of this method is O(d ⇤ n2(d+1))
where n is the number of nodes in the query graph and d is a threshold which defines
the maximum number of acceptable operations of edition to carry out the deformations
[Messmer and Bunke, 1998].

55

2.3. GRAPH MATCHING

2.3.2.2 Spectral methods

The adjacency and Laplacian matrices of graphs provide an interesting representation,
given the available mathematical tools available for matrices. However, the matching of
two graphs using the matrices is complex. Actually the adjacency and Laplacian matrices
of graphs are based on the ordering of numbers assigned to the nodes. The latter is assigned
randomly. The rows and columns can be swapped between two matrices representing the
same graph. The problem of error tolerant graph isomorphism can be considered a com-
binatorial problem since it requires a step for assigning rows of a matrix to another. One
of the methods employed, is the Hungarian algorithm which is of polynomial complexity
(thus the advantage of the use of matrices is limited).

In contrast, the methods based on spectral theory of graphs, [Chung, 1997] and
[Godsil and Royle, 2011], analyze the values and eigenvectors of adjacency or Laplacian
matrices. The eigenvalues are independent of permutations of vertices. In fact, if two
graphs are isomorphic, then their spectrum are equal, without using an assignment in
advance. The reverse is not true - non isomorphic graphs can have the same spectrum
(they are called co-spectral).

Among the first methods, is a method proposed by [Umeyama, 1988]. The author
uses the decomposition of eigenvalues and eigenvectors of adjacency matrices, to deduce
the orthogonal matrix that is optimized later. For this, suppose a priori that graphs are
isomorphic. If they are, then the method finds the optimal permutation. If graphs are
close to the isomorphism, then the solution is suboptimal. However, for non-isomorphic
graphs the quality of results decreases.

This idea is used in combination with an approach of clustering by [Jain et al., 1999].
A first work propose to use a clustering of the vertices before matching to associate the
clusters first and then the vertices [Carcassoni and Hancock, 2001]. A second work on
the other hand propose to project the vertices in the graphs eigen space and then use
the clustering in this space to find the matching of nodes [Caelli and Kosinov, 2004]. The
spectral methods also give rise to methods exploiting the characteristics random paths
[Gori et al., 2005].

The weakness of these approaches is that they are based on the matrices of graphs
which do not take the labels of nodes and edges into account. This limits them only to
some restricted set of applications.

56

2.3. GRAPH MATCHING

2.3.3 Distance between two graphs

The graph matching methods mentioned above are based on exact or error tolerant
graph matching. These algorithms makes it possible to find if two graphs are identical
or if they meet the possible tolerance constraints. Two graphs with certain di↵erences,
not enough to be matched, are considered dissimilar. Which means that the similarity
between them is deemed void and distance between them is regarded as infinity.

In many applications the comparison is seldomly done as a boolean operator of identical
and non-identical. Generally, comparison is regarded more as a continuous measure of
similarity. From this point of view, the graph matching methods (exact and error tolerant)
doest not always e↵ectively respond to the issues of pattern recognition. To overcome this
shortcoming, the methods detailed in this section propose to establish a measure of distance
between graphs.

Formally in mathematics, the distance is an application on a set E, called metric space,
such as:

d : E ⇥ E �! Rn

In addition, it must verify the following properties:

symmetry: 8x, y 2 E, d(x, y) = d(y, x)

Separation: 8x, y 2 E, d(x, y) = 0, x = y

triangular inequality: 8x, y 2 E, d(x, z) d(x, y) + d(y, z)

This definition is directly applicable to two shapes which are represented by feature
vectors. The Euclidean space in which the vectors (for statistical pattern recognition
methods) are defined, by definition allows to use all the metrics defined in this space
(including the distances).

In this section we introduce two widely employed distances for graphs, namely the
graph edit distance and the distance from the largest common subgraph.

57

2.3. GRAPH MATCHING

2.3.3.1 Graph edit distance

A formal definition of graph edit distance is introduced in Section 1.4 of the dissertation.

The graph edit distance is a method inspired by the work on string edit distance
[Levenshtein, 1966], and generalized to the case of graphs. The main idea of this distance
is a dissimilarity measure based on the number and strength of the transformations to be
applied on a set - a string - to transform it into another. The concept of edit distance
has been extended from strings to more complex structures like trees in a first attempt
([Selkow, 1977] and [Tai, 1979]) and then to attributed graphs ([Tsai and Fu, 1979] and
[Eshera and Fu, 1984]).

The general idea of graph edit distance is to define the dissimilarity of two graphs by
the distortion required to transform one graph into another. Specifically, the graph edit
distance is modeled by the path of least edition cost representing the sequence of processing
operations by associating a cost. The cost is low if the graphs have many similarities, and
otherwise the cost is higher.

Let g
1

= (V 1, E1, µV

1
, µE

1
) and g

2

= (V 2, E2, µV

2
, µE

2
) be two graphs. The graph

edit distance between g
1

and g
2

is defined as:

d(g
1

, g
2

) = min
(e1,...,e

k

)2�(g1,g2)

kX

i=1

c(e
i

)

where,

�(g
1

, g
2

) denotes the set of edit paths transforming g
1

into g
2

and

c denotes the cost function measuring the strength c(e
i

) of edit operation e
i

.

The function c includes all possible costs of edit operations. The edit operations
(distortions) are usually adding or removing a node, the addition or deletion of an edge
and changing a node label and changing an edge label. The strengths and weaknesses of
this distance are concentrated to the function c. It allows to adapt the cost, depending
on the problem domain, by penalizing, more or less, the various distortions to apply.
And because of the very same reason, these cost functions parameters are sensitive and
di�cult to resolve [Bunke, 1999]. Some work propose the automatic learning of these costs,
thus facilitating the parameter setting of the cost function ([Neuhaus and Bunke, 2004],
[Neuhaus and Bunke, 2007]). One of the strengths of this technique is its genericity. This
distance is therefore often referred to evaluate the quality of a similarity measure between
two graphs.

58

2.3. GRAPH MATCHING

The calculation of the edit distance is based on a search tree representing all solutions
of matches, each node of the tree represents a pairing and a path - path from the root
to a leaf - is a possible match, but not necessarily optimal, between two graphs. This
tree is built dynamically - like the pairing with the tree - by optimizing the probable
search cases of vertices to vertices matching by employing a heuristic (A⇤ for example
([Hart et al., 1968])). The complexity of the algorithm is still exponential in the number
of vertices. The flexibility of the edit distance can thus be used on a wide variety of graphs
without constraints on labels or on the topology, but its application is restricted to small
graphs only. In [Neuhaus, M. et Bunke, 2006], the authors propose a solution to reduce
this complexity at the cost of suboptimal matching.

2.3.3.2 Distance from the largest common subgraph

The search for the largest common subgraph is also a common method used for the
calculation of distance between graphs. Other methods based on its complement, the
search for the smallest super graph, also exist.

The largest common subgraph of two graphs g
1

and g
2

is the largest graph that is
both subgraph of g

1

and subgraph of g
2

. It can therefore be seen as an intersection of
g
1

and of g
2

. A standard approach to extract the greatest common graph of two graphs
is related to the notion of finding maximum clique. Methods based on this approach
and their comparison are presented in [Bunke et al., 2002]. The approach of McGregor
[McGregor, 1982] is recognized as a reference.

The largest common subgraph permits to measure the similarity between two objects.
Intuitively, a larger common subgraph of g

1

and g
2

will be large if the two graphs are very
similar, small otherwise. From the largest common subgraph determined, more distance
calculations are envisaged. The distance so determined is used to translate the similarity
between graphs. [Pelillo, 1999] formalizes the pelillo metric space and the definition of
distance from larger common subgraph. For example, we present the two distances the
most commonly used in the literature.

In [Bunke, 1997], Bunke defines a distance such that:

d(g
1

, g
2

) = |g
1

|+ |g
2

|� 2⇥ |mcs(g
1

, g
2

)|

where mcs refers to maximum common subgraph.

This distance establishes a relationship between the graph edit distance and the size
of the largest common subgraph.

59

2.3. GRAPH MATCHING

In [Bunke and Shearer, 1998], the authors define the distance:

d(g
1

, g
2

) = |mcs(g1,g2)|
max(|g1|,|g2|)

The distance is normalized between 0 and 1.

60

2.3. GRAPH MATCHING

2.3.4 Graph embedding

Over decades of research in pattern recognition, the research community has developed
a range of expressive and powerful approaches for diverse problem domains. Graph based
structural representations are usually employed for extracting the structure, topology and
geometry, in addition to the statistical details of underlying data. During the next step in
the processing chain, generally these representations could not be exploited to their full
strength because of limited availability of computational tools for them. On the other hand,
the e�cient and mature computational models, o↵ered by statistical approaches, work only
on vector data and cannot be directly applied to these high-dimensional representations.
Recently, this problem has been addressed by the emerging research domain of graph
embedding.

Graph embedding is a natural outcome of parallel advancements in structural and
statistical pattern recognition. It o↵ers a straightforward solution, by employing the
representational power of symbolic data structures and the computational superiority of
feature vectors [Bunke et al., 2005]. It acts as a bridge between structural and statis-
tical approaches [Bunke et al., 2001, Roth et al., 2003], and allows a pattern recognition
method to benefit from computational e�ciency of state-of-the-art statistical models and
tools [Chen et al., 2007] along-with the convenience and representational power of classi-
cal symbolic representations. This permits the last three decades of research on graph
based structural representations in various domains [Conte et al., 2004], to benefit from
the state-of-the-art machine learning models and tools. Graph embedding has its ap-
plication to the whole variety of domains which are entertained by pattern recognition
and where the use of a relational data structure is mandatory for performing high level
tasks. Apart from reusing the computational e�cient methods for vector spaces, an-
other important motivation behind graph embedding methods is to solve the computa-
tionally hard problems geometrically [Shaw and Jebara, 2009]. The pattern recognition
research community acknowledges the emerging importance of graph embedding methods
[Foggia and Vento, 2010] for realizing the classical idea of using the structural and statis-
tical methods together. We refer the interested reader to [Lee and Madabhushi, 2010] for
further reading on the applications of graph embedding.

The graph embedding methods are formally categorized as implicit graph embedding
or explicit graph embedding.

The implicit graph embedding methods are based on graph kernels. A graph ker-
nel is a function that can be thought of as a dot product in some implicitly existing
vector space. Instead of mapping graphs from graph space to vector space and then com-
puting their dot product, the value of the kernel function is evaluated in graph space.
Such an embedding satisfies the main mathematical properties of dot product. Since
it doest not explicitly map a graph to a point in vector space, a strict limitation of
implicit graph embedding is that it does not permit all the operations that could be
defined on vector spaces. We refer the interested reader to [Riesen and Bunke, 2010a],

61

2.3. GRAPH MATCHING

[Riesen and Bunke, 2010b, Foggia and Vento, 2010] for further reading on graph kernels
and implicit graph embedding.

On the other hand, the more useful, explicit graph embedding methods explicitly embed
an input graph into a feature vector and thus enable the use of all the methodologies
and techniques devised for vector spaces. The vectors obtained by an explicit graph
embedding method can also be employed in a standard dot product for defining an implicit
graph embedding function between two graphs [Bunke and Riesen, 2011b]. Explicit graph
embedding requires that graphs must be embedded in pattern spaces in a manner that
similar structures come close to each other and di↵erent structures goes far away i.e. an
implicit clustering is achieved [Wilson et al., 2005]. Another important property of explicit
graph embedding is that the graphs of di↵erent size and order needs to be embedded into a
fixed size feature vector. This means that for constructing the feature vector, an important
step is to mark the important details that are available in all the graphs and are applicable
to a broad range of graph types. We refer the interested reader to [Foggia and Vento, 2010]
for further reading on explicit graph embedding.

Graph embedding is an interesting solution for addressing the computational limita-
tions of structural pattern recognition and in particular for addressing the problem of
graph isomorphism which belongs to the class of NP-complete problems. The mapping of
high dimensional graph to a point in suitable vector space permits to perform the basic
mathematical computations which are required by various statistical pattern recognition
techniques. This makes graph embedding a good solution to address the problems of graph
clustering and classification. However, in our opinion, graph embedding lacks the capa-
bilities to address the problem of graph matching. This is because of the strict limitation
of the resulting feature vector which is not capable of preserving the matching between
nodes of graphs.

Recent research surveys on graph embedding are presented by [Lee and Madabhushi, 2010,
Foggia and Vento, 2010, Bunke and Riesen, 2011b].

In literature the problem of explicit graph embedding has been approached by three
important families of algorithms.

Graph probing based methods

Spectral based graph embedding

Dissimilarity based graph embedding

62

2.3. GRAPH MATCHING

2.3.4.1 Graph probing based methods

The first family of graph embedding methods is based on the frequencies of appear-
ance of specific knowledge-dependent substructures in graph. This embedding is based
on feature extraction on structural data. These numeric features capture both topology
information (number of nodes, arcs, degree of nodes) and the contents of the graph (his-
togram of the labels for example). This embeds a graph into a feature vector in Euclidean
space.

One of the first methods of graph probing dates back to 1940’s ([Wiener, 1947]). In
this method, each graph is represented by an index called Wiener index. The index is a
topological descriptor defined by the sum of all shortest paths in the graph, such that if
G = (G(V), G(E)) is a graph, then the Wiener index W (G) of G is:

W (G) =
P

v

i

2G(V)

P
v

j

2G(V)

l(v
i

, v
j

)

where l(v
i

, v
j

) is a function that defines the length of the shortest path between the
node and the node v

i

and v
j

in the graph G.

Another approach is introduced in [Papadopoulos, A. N. et Manolopoulos, 1999]. For
undirected and unattributed graphs, the authors calculate the degree of each node then
form a sorted histogram of degrees. So they get the vector �(G) 2 Rn such that if
G = (V (G), E(G)) is a graph then �(G) = (n

0

, n
1

, n
2

, ...) where n
i

= {v 2 V |d
G

(v) = i}.
The features of the resulting vector are the number of nodes of degree 1, the number of
nodes of degree 2, and so on.

An extension of this technique is proposed in [Lopresti and Wilfong, 2003]. The au-
thors also suggest a representation based on local descriptors of nodes and generalize the
method for all types of graphs. This representation is based on the degree of vertices in the
case of undirected and unlabeled graphs. In the case of directed graphs, the representation
uses in degree and out degree of nodes. This representation can be adapted to take into
consideration labeled graphs, taking into account, in addition to the degree of the nodes,
the labels of the connected edges. On the other hand, the authors present an interesting
relationship between the graph edit distance and the distance between the embedding of
two graphs. They have shown that the distance between the embedding of two graphs g

1

and g
2

, given by d
GEM

(g
1

, g
2

), is less than 4 times of the graph edit distance between them,
given by d

GED

(g
1

, g
2

). Mathematically this is given as d
GEM

(g
1

, g
2

) 4⇥ d
GED

(g
1

, g
2

).

Recently, in [Gibert et al., 2011a] and [Gibert et al., 2011c], the authors have proposed
a graph embedding method by counting the frequency of appearance of specific set of
representatives of labels of nodes and their corresponding edges. In [Gibert et al., 2011b]
the authors propose an improvement of their graph embedding technique by dimensionality
reduction of the obtained feature vector.

63

2.3. GRAPH MATCHING

The algorithms presented in the cited works provide an embedding of graph into feature
vector, in linear time complexity. Their simplicity of implementation is an important
advantage of this family of methods. However, the features they use, are very localized to
nodes and arcs. The graph embedding contains little information on the topology, which
can have a negative impact on the classification results.

A sub family of this category of graph embedding methods is based on the frequencies
of appearance of specific knowledge-dependent substructures in graph. These works are
mostly proposed for chemical compounds and molecular structures. Graph representation
of molecules are assigned feature vectors whose components are the frequencies of appear-
ance of specific knowledge-dependent substructures in graphs ([Kramer and Raedt, 2001]
and [Inokuchi et al., 2000] for example).

Recently, Sidere in [Sidère et al., 2008], [Sidère et al., 2009a], [Sidère et al., 2009b] and
PhD thesis [Sidère, 2012], has proposed a graph embedding method. The method is based
on the extraction of substructures of 2 nodes, 3 nodes , 4 nodes and so on, from a graph.
The feature vector representation is then obtained by counting the frequencies of these sub-
structures in the graph (Figure 2.8). The method proposed by Sidere is rich in topological
information and is very interesting for pattern recognition.

The methods based on the frequencies of appearance of specific knowledge-dependent
substructures in graph, are based on finding subgraphs in graph and are capable of ex-
ploiting domain knowledge. However, they have a drawback that finding substructures in
graphs is computationally challenging.

Figure 2.8: A graph and a lexicon generated from a non-isomorphic graph network.

64

2.3. GRAPH MATCHING

2.3.4.2 Spectral based graph embedding

The second family of graph embedding algorithms is spectral based embedding. Spec-
tral based embedding is a very prominent class of graph embedding methods and is
proposed by lots of works in literature. In order to embed graphs into feature vectors,
this family of methods extract features from graphs by eigen-decomposition of adja-
cency and Laplacian matrices and then apply a dimensionality reduction technique on
the eigen-features. Many work for graph embedding exploit the spectral theory of graphs
([Chung, 1997]) and are interested in the properties of the spectrum of a graph and the
characterization of the topology graph using eigenvalues and eigenvectors of the adjacency
matrix or Laplacian matrix.

In [Harchaoui, 2007], graph embedding using the spectral approach is proposed. The
authors use the leading eigenvectors of the adjacency matrix to define the eigenspaces
of adjacency matrices. Spectral properties are then calculated for each eigenmode. In
[Luo et al., 2003], the authors also use the adjacency matrices of graphs as a support
and then compute their eigenvectors and thus obtain modes to define the vector space
(perimeter, volume, Cheeger number etc.). Construction of the vector is completed by
applying the dimensionality reduction using PCA (Principal Component Analysis), ICA
(Independent Component Analysis) or MDS (Multidimensional Scaling).

Graph embedding has also been approached by using Laplacian matrix. For example,
in [Robles-Kelly and Hancock, 2007], a spectral approach is proposed using the Laplace-
Beltrami operator to embed the graphs in a Riemannian manifold or a metric where
one can define the length of a path (called a geodesic) between two points of the man-
ifold. This length of the path is then used to calculate similarity between graphs. In
[Kosinov and Caelli, 2002], the embedding of the nodes of a graph is performed on an
eigenspace defined by the first eigenvectors. In [Wilson et al., 2005], the authors propose
to use a spectral decomposition of Laplacian matrix, and construct the symmetric poly-
nomials. The coe�cients of these polynomials are then used for graph embedding.

As for graph matching techniques, the spectral theory of graphs shows interesting
properties that can be used for graph embedding. Its main benefit is the linear complexity
associated with operations on matrices. The spectral family of graph embedding methods
provide solid theoretical insight into the meaning and significance of extracted features.
However these approaches have some limitations. Spectral methods are sensitive to noise,
removing a node, for example, changes the matrices (adjacency or Laplacian) and these er-
rors a↵ect the embedding functions. In addition, their use is restricted to unlabeled graphs
making it di�cult to use these approaches in most applications of pattern recognition.

65

2.3. GRAPH MATCHING

2.3.4.3 Dissimilarity based graph embedding

Finally the third family of graph embedding algorithms is based on dissimilarity of
a graph from a set of prototypes. The dissimilarity based graph embedding can handle
arbitrary graphs. The dissimilarity based graph embedding methods usually use graph edit
distance and exploit domain knowledge. But since graph edit distance is computationally
expensive, the dissimilarity based graph embedding methods may become computationally
challenging.

Unlike the aforementioned approaches of graph embedding, the dissimilarity based
graph embedding techniques do not focus on the extraction of a vector from the graph.
Rather, the idea is to construct a vector by comparing a graph with a selection of graphs
- called prototypes.

In [Pekalska and Duin, 2005], the authors present dissimilarity based representation as
an alternative to the feature vectors. Starting from the postulate that the dissimilarity is
used to separate a class of objects from another, the authors o↵er to characterize objects
not by absolute attributes but as a vector of dissimilarity from objects of other classes.
An object is defined by its embedding in a dissimilarity space.

In [Riesen et al., 2007], [Ferrer et al., 2008], [Riesen and Bunke, 2009] and
[Riesen and Bunke, 2010c], the authors propose to adapt this dissimilarity space for the
construction of a graph embedding function. The main idea of this work is to construct a
vector of graph edit distances from the graph to be embedded and a set of k prototypes
selected in the graph database. The embedding of the graph is thus a vector of k distances.
Formally, let � = g

1

, ..., g
n

be a set of graphs and p = p
1

, ..., p
k

⇢ � be a subset of selected
prototypes from �. The graph embedding is defined as the function � : � 7�! (R)k, such
that �(g) = [d(g, p

1

), ..., d(g, p
k

)] where d(g, p
i

) is the graph edit distance between graph
g and the ith prototype graph in p.

In [Bunke and Riesen, 2011a] and [Bunke and Riesen, 2011b], the authors propose an
improvement of the graph embedding method by using feature selection method.

This type of projection is very e�cient. The di�culty of setting the edit distance -
mentioned above - is found in this method. In addition, the choice of prototype graphs
is also a significant parameter as it determines the size of the vector and its capacity to
e↵ectively represent the graph in the vector space. In addition, it remains highly dependent
on the application and its learning set. In [Riesen and Bunke, 2009] and [Riesen, 2010],
the authors have given some indications on the choice of the prototype graphs.

66

2.4. FUZZY LOGIC

2.4 Fuzzy logic

Fuzzy logic is a soft computing paradigm and is a form of knowledge representation
suitable for notions that cannot be defined precisely, but which depend upon their contexts.
It is a superset of conventional boolean logic that has been extended to handle the concept
of partial truth i.e. truth values between “completely true” and “completely false”.

Fuzzy logic recognizes more than simple true and false values. In contrast with con-
ventional boolean logic theory, where binary sets have two-valued logic i.e. true or false,
fuzzy logic variables may have a truth value that ranges in degree between 0 and 1.

With fuzzy logic, propositions can be represented with degrees of truthfulness and
falsehood. For example, the statement, today is sunny, might be 100% true if there are
no clouds, 80% true if there are a few clouds, 50% true if it’s hazy and 0% true if it rains
all day.

Figure 2.9 represents the meaning of the expressions cold, warm, and hot by functions
mapping a temperature scale. A point on the scale has three “truth values” one for each
of the three functions. The vertical line represents a particular temperature that the three
arrows (truth values) gauge. Since the red arrow points to zero, this temperature may be
interpreted as “not hot”. The orange arrow (pointing at 0.2) may describe it as “slightly
warm” and the blue arrow (pointing at 0.8) “fairly cold”.

Figure 2.9: Example of fuzzy logic (temperature).1

0Image courtesy of http://en.wikipedia.org/wiki/Fuzzy_logic

67

http://en.wikipedia.org/wiki/Fuzzy_logic

2.4. FUZZY LOGIC

Fuzzy sets were first proposed by Lofti A. Zadeh in [A. and Zadeh, 2008]. This paper
laid the foundation for the modern fuzzy logic. It mathematically defined fuzzy sets and
their properties, as given by:

Let X be a space of points, with a generic element of X denoted by x. Thus X = {x}.
A fuzzy set A in X is characterized by a membership function f

A

(x) which associates
with each point in X a real number in the interval [0, 1], with the values of f

A

(x) at x
representing the “grade of membership” of x in A. Thus, the nearer the value of f

A

(x) to
unity, the higher the grade of membership of x in A.

This definition of a fuzzy set is like a superset of the definition of a set in the ordinary
sense of the term. The grades of membership of 0 and 1 correspond to the two possibilities
of truth and false in an ordinary set. The ordinary boolean operators that are used to
combine sets no longer apply; we know that 1 AND 1 is 1, but what is 0.7 AND 0.3?

Membership functions for fuzzy sets can be defined in any number of ways as long
as they follow the rules of the definition of a fuzzy set. The shape of the membership
function used defines the fuzzy set and so the decision on which type to use is dependent
on the purpose. The membership function choice is the subjective aspect of fuzzy logic, it
allows the desired values to be interpreted appropriately. Figure 2.10 shows the commonly
employed shapes of trapezoid, triangle and Gaussian, for the fuzzy membership functions.

Figure 2.10: Some shapes commonly employed for the membership function S(x).1

1Image from [Borges, 1996]

68

2.4. FUZZY LOGIC

Traditional boolean logic uses the boolean operators AND, OR, and NOT to perform
the intersection, union and complement operations. These operators work well for
boolean sets but fuzzy logic does not have a finite set of possibilities for each input. The
operators need to be defined as functions for all possible fuzzy values, that is, all real
numbers from 0 to 1 inclusive. The operators for fuzzy sets are given in Table 2.1. Figure
2.11 shows an illustration of these operators for triangular membership function of fuzzy
logic.

Table 2.1: Defining operators for fuzzy sets.

Operator For fuzzy sets

A AND B min(A, B)

A OR B max(A, B)

NOT A (1 - A)

Figure 2.11: Pictorial illustration of operations on boolean and fuzzy logic.1

1Image courtesy of http://www.mathworks.fr/help/toolbox/fuzzy/bp78l6_-1.html

69

http://www.mathworks.fr/help/toolbox/fuzzy/bp78l6_-1.html

2.4. FUZZY LOGIC

We refer the interested reader to [Klir and Yuan, 1995], [A. and Zadeh, 2008],
[Radzikowska and Kerre, 2002] and [Liu, 2010] for further reading on fuzzy logic and soft
computing.

We have employed fuzzy logic to incorporate smooth transitions between the overlap-
ping intervals of data (representing the various attributes of graphs). This enables our
method to minimize the information loss while mapping from continuous graph space to
discrete feature vector space, and to gracefully handle noise (and deformations) in graphs,
for proposing a robust embedding of graphs into numeric feature vectors.

70

2.5. LIMITATIONS OF EXISTING METHODS AND OUR CONTRIBUTIONS

2.5 Limitations of existing methods and our contributions

In this section, we discussed the broad classification of graph comparison methods by
providing a summary of the important methods in each category.

First we introduced the methods of exact graph matching. From a graph theory ap-
proach, such as the isomorphism of graphs and subgraphs, these techniques are designed
to verify the similarity between two graphs. However, their rigid character penalize the
distortions in graphs. Their performance is related to the quality of representation of data
by graphs. In addition to computing the similarity between two graphs, these methods
of graph matching provide details on the comparison of the topologies of the two graphs
with a proposed mapping between the nodes of the two graphs nodes. This information
turns out to be very useful in a system of information retrieval where the query is a partial
object that we are looking to locate in a bigger object. Pattern recognition by graphs
allows this type of search through the use of matches. On the other hand the statistical
approaches require a priori segmentation of objects, or using a sliding window, involving a
di�cult parameter which highly influences the the quality of results. The graph matching
algorithms provide the node to node mapping between two graphs only if an isomorphism
exists (and is established) between them.

All distortions result into a no-match, whatsoever the are. To address this problem, the
error tolerant graph matching methods suggest to relax the constraints on the matching
of nodes and arcs. They find the isomorphism, tolerant to noise. This allows them to
be applicable to the data that contains distortions (which exist very often in pattern
recognition and image analysis). The inexact matching methods o↵er greater tolerance to
match two nodes (or two edges) with slight di↵erence. But these methods are complex to
implement.

We have seen that the other proposed methods allow more tolerance to noise but lose
the matching between vertices of graphs. The distances between graphs are defined as the
most intuitive to quantify similarities between graphs. They provide a measure that is
e↵ective when used in classification and robust to di↵erent noise. However, the algorithms
are complex and this complexity can be a significant obstacle in some cases.

Implicit graph embedding in a vector space, bridge the e↵ectiveness of statistical classi-
fication tools with the flexibility and descriptive power of graphs. However, the algorithms
used are very complex. The distance calculation performed in the graph space is itself
complex.

The vector representation of graphs by an explicit graph embedding algorithm seems
to be the track to meet the technical obstacles for pattern recognition. This is because
of the fact that they can, in theory, combine e↵ectively the power and flexibility of graph
representation with the diversity and complexity of statistical tools. However, no e�cient
and simple method to adapt to the data is yet available.

71

2.5. LIMITATIONS OF EXISTING METHODS AND OUR CONTRIBUTIONS

By analyzing all the methods described in this chapter, we can mention the following
important limitations of graph matching methods:

Exact methods cannot deal with noise and deformations.

Exact methods cannot deal with attributes on nodes and edges of the graph.

Exact methods cannot deal with huge graphs.

Error tolerant methods are time consuming.

Error tolerant methods do not have the ability to achieve unsupervised learning.

Error tolerant methods need training dataset.

Error tolerant methods have the worst management of discretization step.

The computation of distance between graphs is computational expensive.

To the best of our knowledge, most of the existing works on graph embedding can
handle only the graphs which are comprised of edges with a single attribute and vertices
with either no or only symbolic attributes. These methods are only useful for specific
application domains for which they are designed. Our proposed method of explicit graph
embedding can embed attributed graphs with many symbolic as well as numeric attributes
on both nodes and edges.

Our proposed method of explicit graph embedding does not require any dissimilarity
measure between graphs and proposes a natural embedding of topological, structural and
attribute information of an input graph into a feature vector.

The method is applicable to undirected as well as directed attributed graphs, without
imposing any restriction on the size of graphs.

We employ fuzzy overlapping trapezoidal intervals for minimizing the information loss
while mapping from continuous graph space to discrete feature vector space. The use of
fuzzy logic enables our method to gracefully handle noise (deformations) in graphs and to
propose a robust embedding of graphs into numeric feature vectors.

Our method does not necessarily need any labeled training set and has built-in un-
supervised learning abilities. In scenarios where no additional training set is available,
the method has the capability to exploit the graph dataset to be embedded into feature
vectors, for adapting its parameters during an o↵-line unsupervised learning phase. Once
the learning is performed it o↵ers real-time embedding of attributed graphs into feature
vectors.

72

2.5. LIMITATIONS OF EXISTING METHODS AND OUR CONTRIBUTIONS

Many existing solutions for graph embedding are based on spectral analysis of the
adjacency matrix of graphs and o↵er to utilize the statistical significant details in graphs
for embedding them into feature vectors. Our method exploits the topological, structural
and attribute information of the graphs along-with the statistical significant information,
for constructing feature vectors. The proposed feature vector is very significant for ap-
plication domains where the use of graphs is mandatory for representing rich structural
and topological information, and an approximate but computational e�cient solution is
needed.

Our proposed method of graph embedding does not require any labeled learning set,
another important extension to the existing works is the inexpensive deployment of our
graph embedding method to a wide range of application domains.

We propose to extend the methods in literature by o↵ering the embedding of directed
and undirected attributed graphs with numeric as well as symbolic attributes on both
nodes and edges. We propose a consistent embedding of graphs i.e. two similar graphs are
mapped to points near to each other in feature vector space. Multi facet information from
global, topological and local point of view seems very important to be preserved. The
extraction of topological and structural level details and multilevel distribution analysis
of graph are the novelty of our work.

In the rest of the dissertation we present our work on explicit graph embedding. We
propose an e�cient method to achieve simple and straightforward embedding of attributed
graphs into feature vectors, for answering the problems of graph classification and graph
clustering.

73

2.5. LIMITATIONS OF EXISTING METHODS AND OUR CONTRIBUTIONS

74

Chapter 3

Fuzzy Multilevel Graph
Embedding

In this chapter we outline our explicit graph embedding method i.e. the Fuzzy Multilevel
Graph Embedding (FMGE). We first present an overall global description of FMGE and
then present details on the FMGE framework. We elaborate the description of FMGE
by example graphs of primitive geometric shapes. We briefly introduce the application of
FMGE to graph classification, graph clustering and graph retrieval.

3.1 Introduction

This chapter presents detailed description of our proposed method of explicit graph
embedding i.e. the Fuzzy Multilevel Graph Embedding. For improving the continuity and
readability of the dissertation we use the abbreviation FMGE for referring to the Fuzzy
Multilevel Graph Embedding.

For embedding an attributed graph into a numeric feature vector, FMGE performs
multilevel analysis of graph to extract discriminatory information of three di↵erent levels
from a graph. This includes the graph level information, structural level information and
the elementary level information. The three levels of information represent three di↵erent
views of graph for extracting coarse (global) details, then going more deep to the details

75

3.1. INTRODUCTION

on the topology of graph and then penetrating into details on the elementary building
units of the graph. The multilevel analysis of a graph enables FMGE to look upon it from
three di↵erent perspectives. Graph level information permits FMGE to extract general
information about a graph. The structural level information allows FMGE to extract
homogeneity of subgraphs in a graph. And the elementary level information allows FMGE
to penetrate into more in-depth and granular view of a graph, for extracting discriminatory
information from the elementary building blocks of graphs.

FMGE encodes the numeric part of each of the di↵erent levels of information by fuzzy
histograms. It constructs the fuzzy histograms by employing fuzzy logic. The use of fuzzy
logic permits FMGE to use smooth transition between the intervals of the histograms
and enables FMGE to minimize the information loss while embedding graphs into feature
vectors. FMGE encodes the symbolic part of the multilevel information of a graph by
crisp histograms. Once the histograms are constructed, FMGE employs the histogram
representation of the multilevel information of a graph for embedding it into a numeric
feature vector.

FMGE adapts the parameters for constructing the fuzzy and crisp histograms to un-
derlying graphs by its unsupervised learning capabilities, without requiring any labeled
learning set.

In this chapter we first describe the input, output and the multilevel information in the
feature vector of FMGE. Afterwards, we present a detailed description of FMGE frame-
work: we present the unsupervised learning phase of FMGE and the graph embedding
phase of FMGE.

Initial versions of this work have been published in [Luqman et al., 2009b],
[Luqman et al., 2009a], [Luqman et al., 2010c], [Luqman et al., 2010d] and
[Luqman et al., 2010a].

To facilitate the explanation and comprehension of the description of FMGE, we have
used example graphs of primitive geometric shapes, of unit length, of a rectangle, an
occluded square and a triangle. The example graphs and their corresponding shapes are
shown in Figure 3.1.

In Figure 3.1, a vertex in graph is an abstract representation of a primitive line in
underlying content, with an attribute of length L. An edge in graph represents the con-
nectivity relationship between two primitive lines in underlying content, with their relative
length RL and angle Angle between them as the edge attributes.

76

3.1. INTRODUCTION

(a) A rectangle.

(b) An occluded square.

(c) A triangle.

Figure 3.1: Attributed graph representation of basic geometric shapes of unit length.

77

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

3.2 Overview of fuzzy multilevel graph embedding (FMGE)

A block diagram of FMGE is presented in Figure 3.2. It accepts a collection of m
attributed graphs as input and encodes their topological, structural and attribute details
into m equal size feature vectors.

Figure 3.2: Overview of Fuzzy Multilevel Graph Embedding (FMGE).

As shown in Figure 3.2, FMGE accepts a collection of m attributed graphs as input, as
given by:

{AG
1

, AG
2

, ..., AG
e

, ..., AG
m

}

where the eth graph is denoted by:

AG
e

= (V
e

, E
e

, µV

e , µE

e).

For the input collection of m attributed graphs, FMGE produces a collection of m
same size feature vectors as output, as given by:

{FSMFV
1

, FSMFV
2

, ..., FSMFV
e

, ..., FSMFV
m

}

The eth input graph AG
e

is embedded into feature vector FSMFV
e

:

78

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

AG
e

7�! �(AG
e

) = FSMFV
e

where FSMFV
e

is a point in n dimensional vector space Rn:

FSMFV
e

= (f
e1 , fe2 , ..., fen)

3.2.1 Description of feature vector of FMGE

We have named the feature vector of FMGE as Fuzzy Structural Multilevel Feature
Vector and abbreviated it as FSMFV. It contains features extracted from three levels of
information in graph:

i) Graph level information

ii) Structural level information

iii) Elementary level information

The features for graph level information represent a coarse view of graph and give a
general information about the graph. These features include the graph order and graph
size.

The features for structural level information represent a deeper view of graph and are
extracted from the node degrees and subgraph homogeneity in graph.

The third level of information is extracted by penetrating into further depth and more
granular view of graph and employing details of the elementary building blocks of graph.
These features represent the information extracted from the node and edge attributes.

FSMFV is a vector in n dimensional vector space Rn, given as:

FSMFV = (f
1

, f
2

, ..., f
n

)

The overall structure of FSMFV is presented in Figure 3.3.

79

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

Structural Level Information

[intermediate details]

Elementary Level Information

[micro details]

Graph Level Information

[macro details]

Figure 3.3: The Fuzzy Structural Multilevel Feature Vector (FSMFV).

In subsequent subsections we present detailed discussion on each of the three di↵erent
levels of information in FSMFV.

3.2.1.1 Embedding of graph level information

The graph level information in FSMFV is embedded by two numeric features, encoding
the order and the size of graph.

Graph order: A graph vertex is an abstract representation of the primitive compo-
nents of underlying content. The order of a graph provides very important discriminatory
topological information on the graph.

Graph order (|V |) allows to discriminate between a small graph in Figure 3.1(c) and
bigger graphs in Figure 3.1(b) and Figure 3.1(a) (|V | = 3 vs |V | = 4). At the same time
it permits to define a similarity between two equal ordered graphs in Figure 3.1(b) and
Figure 3.1(a) (|V | = 4).

Graph size: An edge is an abstract representation of the relationship between the
primitive components of underlying content. Graph size also provides important discrim-
inatory information on the topological details of graph.

Two equal ordered graphs in Figure 3.1(b) and Figure 3.1(a) are di↵erentiated by graph
size (|E|) i.e. a thin graph in Figure 3.1(b) is di↵erentiated from a thicker graph in Figure
3.1(a) (|E| = 3 vs |E| = 4). At the same time it permits to define a similarity between
two equal sized graphs in Figure 3.1(c) and Figure 3.1(b) (|E| = 3).

80

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

3.2.1.2 Embedding of structural level information

The embedding of structural level information is a novelty and the most critical part of
FMGE. Very few existing works on graph embedding clearly use this information. We use
node degrees information and subgraph homogeneity measure embedded by histograms of
node attributes resemblance and edge attributes resemblance, for embedding structural
level information. Figure 3.4 outlines this part of FSMFV.

Histograms of node attributes resemblance
hnr
d

and hnr
1

, hnr
2

, . . . , hnr
k

Histograms of edge attributes resemblance
her
1

, her
2

, . . . , her
l

Histogram of node degrees
hd

Figure 3.4: Embedding of structural level information.

Node degrees: The degrees of nodes represent the distribution of edges in graph
and provide complementary discriminatory information on the structure and topology of
graph. It permits to discriminate between densely connected graphs and sparsely con-
nected graphs. Node degrees information is encoded by a histogram of s

i

fuzzy intervals.
The fuzzy intervals are learned during a prior learning phase, which employs degrees of
all the nodes of all graphs in dataset. Node degrees features (hd in Figure 3.4), for an
attributed graph, embeds the histogram of its nodes for the s

i

fuzzy intervals. In Figure
3.4, the histogram hd is a fuzzy histogram as node degrees is a numeric information.

For directed graphs this feature is represented by two sub-features of in-degree and
out-degree i.e. a fuzzy histogram for encoding the distribution of in-degrees and an other
fuzzy histogram for encoding the distribution of out-degrees of nodes.

The node degree information for the graphs in Figure 3.1(c), 3.1(b) and 3.1(a) permits
to increase the precision of the similarity between graphs. For example, the graphs in
Figure 3.1(c) and Figure 3.1(b) represent two di↵erent topologies (|V | = 3 and |V | = 4)
and a relatively similar geometry (|E| = 3). On the other hand, the graphs in Figure
3.1(b) and Figure 3.1(a) represent two di↵erent geometries (|E| = 3 and |E| = 4) and a
quite similar topology (|V | = 4). Furthermore, the graphs in Figure 3.1(c) and Figure
3.1(a) represent two di↵erent topologies (|V | = 3 and |V | = 4) and geometries (|E| = 3
and |E| = 4). By incorporating the node degree information, it is very straightforward
to conclude that graphs in Figure 3.1(b) and Figure 3.1(a) are more similar to each other
than the graph in Figure 3.1(c).

81

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

Node attribute’s resemblance for edges: The resemblance between two primi-
tive components that have a relationship between them, in a graph, is a supplementary
information available in the graph. The node attribute’s resemblance for an edge encodes
structural information for the respective node-couple. To compute resemblance informa-
tion for an edge, the node degrees of its two nodes and the list of node attributes as given
by µV are employed for extracting additional information. This additional information is
represented as new edge attributes and is processed like other edge attributes.

Given an edge between two nodes, say node
1

and node
2

in a graph. The resemblance
between a numeric node attribute a is computed by Equation 3.1 and the resemblance
between a symbolic node attribute b is computed by Equation 3.2.

For each numeric node attribute, the resemblance attribute nr is represented by s
nr

features in FSMFV. This resemblance information is encoded by a fuzzy histogram of
s
nr

fuzzy intervals. The fuzzy intervals are learned during a prior learning phase, which
employs resemblance attribute nr of all the edges of all graphs in dataset.

resemblance(a
1

, a
2

) = min(|a
1

|, |a
2

|)/max(|a
1

|, |a
2

|) (3.1)

where,
a 2 {node degree, µV },
a
1

is the value of the attribute a for node
1

and
a
2

is the value of the same attribute a for node
2

.

resemblance(b
1

, b
2

) =

����
1 b

1

= b
2

0 otherwise

���� (3.2)

where,
b 2 µV ,
b
1

is the value of the attribute b for node
1

and
b
2

is the value of the same attribute b for node
2

.

For each symbolic node attribute, we represent the resemblance attribute nr by exactly
two possible numeric features. The resemblance for symbolic attributes can either be 0
or 1 (Equation 3.2). The cardinalities of the two resemblance values in input graph, are
encoded by a crisp histogram which is used as features in FSMFV.

In Figure 3.4 the histogram hnr
d

represents the features for encoding resemblance at-
tribute for node degrees. Whereas, the histograms hnr

1

, hnr
2

, . . . , hnr
k

represent the features
for encoding resemblance attributes for k node attributes µV . The histogram hnr

d

is a
fuzzy histogram since node degree is a numeric information. Each of the histograms

82

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

hnr
1

, hnr
2

, . . . , hnr
k

, is a crisp histogram if its corresponding attribute is symbolic and is a
fuzzy histogram if the attribute that it is encoding is a numeric attribute.

Node attribute’s resemblance for edges of example graphs is shown in Figure 3.5. Two
new attributes are added to the edges of the example graphs: the resemblance attribute
“resemblanceL” and the resemblance attribute “resemblanceNodeDegree”. These new
attributes on edges provides more precision to FMGE for discriminating between the
graphs.

Edge attribute’s resemblance for nodes: The resemblance among the relation-
ships associated to a primitive component, is a supplementary information available in the
graph. The edge attribute’s resemblance for a node encodes the structural information
for the respective edges of node and brings more topological information to FSMFV. To
compute resemblance information for a node, each attribute of its edges (as given by µE) is
employed for extracting additional information. This additional information is represented
as new node attributes and is processed like other node attributes.

Given a node, say node in a graph, the resemblance for the edges connected to node
is computed as the mean of the resemblances between all the pair of edges connected to
node. For a pair of edges, say edge

1

and edge
2

connected to node, the resemblance for a
numeric attribute c is computed by Equation 3.3 and the resemblance between a symbolic
edge attribute d is computed by Equation 3.4.

resemblance(c
1

, c
2

) = min(|c
1

|, |c
2

|)/max(|c
1

|, |c
2

|) (3.3)

where,
c 2 µE ,
c
1

is the value of the attribute c for edge
1

and
c
2

is the value of the same attribute c for edge
2

.

resemblance(d
1

, d
2

) =

����
1 d

1

= d
2

0 otherwise

���� (3.4)

where,
d 2 µE ,
d
1

is the value of the attribute d for edge
1

and
d
2

is the value of the same attribute d for edge
2

.

For each symbolic edge attribute, the resulting resemblance attribute er is treated as
a numeric attribute and is embedded by a fuzzy histogram. The resemblance for symbolic
edge attributes is computed as mean of the resemblances between all the pair of edges

83

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

connected to a node. Although the resemblance for a pair of edges is always either 0 or 1
but mean resemblance for all the pair of edges of a node can be any numeric value (this
is di↵erent from the symbolic node attribute’s resemblance which is always either 0 or
1). Therefore, for each symbolic and numeric edge attribute, the resemblance attribute
er is represented by s

er

features in FSMFV. This resemblance information is encoded by
a fuzzy histogram of s

er

fuzzy intervals. The fuzzy intervals are learned during a prior
learning phase, which employs resemblance attribute er of all the nodes of all graphs in
dataset.

In Figure 3.4 the histograms her
1

, her
2

, . . . , her
l

represent the features for encoding re-
semblance attributes for l edge attributes µE . Each of the histograms her

1

, her
2

, . . . , her
l

, is
a fuzzy histogram.

Edge attribute’s resemblance for nodes of example graphs is shown in Figure 3.5. Two
new resemblance attributes are added on the nodes of the example graphs: the resemblance
attribute “resemblanceRL” and the resemblance attribute “resemblanceAngle”. These new
attributes on nodes compliments the node attribute’s resemblance on edges and enables
FMGE to extract information for discriminating between the graphs.

84

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

(a) Rectangle.

(b) Occluded square.

(c) Triangle.

Figure 3.5: Resemblance attributes for the attributed graph representation of basic geo-
metric shapes of unit length.

85

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

3.2.1.3 Embedding of elementary level information

Embedding of elementary level information allows FMGE to extract discriminatory
information from individual nodes and edges of the graph. The symbolic attributes are
encoded by crisp histograms and the numeric attributes by fuzzy histograms. FMGE can
embed attributed graphs with many symbolic and numeric attributes on both nodes and
edges.

For every symbolic node attribute, each modality that can be taken by this attribute is
represented by exactly one numeric feature in FSMFV. This feature encodes the cardinality
of this modality in an input graph.

Each numeric node attribute is encoded by a fuzzy histogram of its s
i

fuzzy intervals.
The fuzzy intervals are learned for each of the numeric node attributes in the input graph
dataset during a prior learning phase. The features for a numeric attribute of an input
graph, embeds the histogram for these s

i

fuzzy intervals.

Figure 3.6 outlines this part of FSMFV.

Histograms of node attributes
hn
1

, hn
2

, . . . , hn
k

Histograms of edge attributes
he
1

, he
2

, . . . , he
l

Figure 3.6: Embedding of elementary level information.

Node attributes: The node attributes provide additional details on primitive compo-
nents of underlying content and aid FSMFV to discriminate between two similar structured
graphs. In Figure 3.6 the histograms hn

1

, hn
2

, . . . , hn
k

represent the features for encoding k
node attributes µV . Each of the histograms hn

1

, hn
2

, . . . , hn
k

, is a crisp histogram if its corre-
sponding attribute is symbolic and is a fuzzy histogram if the attribute that it is encoding
is a numeric attribute.

The node attributes are very important information for discriminating between two
equal ordered and equal sized graphs, which are representing quite similar structure as
well (for example the graph of a small square can be di↵erentiated from that of a big
square by using a length attribute on the nodes).

The length attribute L of the graph nodes in Figure 3.5(a) provide additional details
on the graph and clearly discriminates it from the graph in Figure 3.5(b).

86

3.2. OVERVIEW OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

Edge attributes: The edge attributes provide supplementary details on the rela-
tionships between the primitive components of the underlying content and aid FSMFV
to discriminate between two similar structured graphs. In Figure 3.6 the histograms
he
1

, he
2

, . . . , he
l

represent the features for encoding l edge attributes µE . Each of the his-
tograms he

1

, he
2

, . . . , he
l

, is a crisp histogram if its corresponding attribute is symbolic and
is a fuzzy histogram if the attribute that it is encoding is a numeric attribute.

The edge attributes are very important information for discriminating between two
equal ordered and equal sized graphs, which are representing quite similar structure as
well (for example the graph of a square can be di↵erentiated from that of a rhombus by
using angle attribute on the edges).

The relative length RL and angle A attribute of the graph edges in Figure 3.5(b)
provide additional details on the graph and clearly discriminates it from the graph in
Figure 3.5(c).

87

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

3.3 Framework of fuzzy multilevel graph embedding (FMGE)

In FMGE framework, the mapping of input collection of graphs to appropriate points in
a suitable vector space Rn is achieved in two phases i.e. the o↵-line unsupervised learning
phase and the on-line graph embedding phase.

The unsupervised learning phase learns a set of fuzzy intervals for features linked to
distribution analysis of the input graphs i.e. features for node degree, numeric node and
edge attributes and the corresponding resemblance attributes. We refer each of them as
an attribute i. For symbolic node and edge attributes and the corresponding resemblance
attributes, the unsupervised learning phase employs the modalities taken by this attribute
and treat them as crisp intervals.

The graph embedding phase employs these intervals for computing di↵erent bins of the
respective fuzzy or crisp histograms.

3.3.1 Unsupervised learning phase

The o↵-line unsupervised learning phase of FMGE is outlined in Figure 3.7. It learns
a set of fuzzy intervals for encoding numeric information and crisp intervals for encoding
symbolic information in graphs.

Figure 3.7: The unsupervised learning phase of FMGE.

88

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

List of values of
attribute i

in input collection
of graphs

Discretization
0n0

i

crisp intervals
Crisp to fuzzy intervals 0s0

i

fuzzy intervals
for attribute i

Figure 3.8: Learning fuzzy intervals for an attribute i.

3.3.1.1 Input and output

The input to unsupervised learning phase of FMGE is the collection of m attributed
graphs, given by:

{AG
1

, AG
2

, ..., AG
e

, ..., AG
m

}

where the eth graph is denoted by:

AG
e

= (V
e

, E
e

, µV

e , µE

e)

A second input to this phase, could be if necessary, for each feature the desired number
of fuzzy intervals. This is referred by s

i

for an attribute i. Some methods of discretization
are able to find the “optimal” number of intervals by themselves (for example, equal
frequency bins, as discussed in next subsection).

As output the unsupervised learning phase of FMGE produces s
i

fuzzy overlapping
trapezoidal intervals for an attribute i in input graphs (example in Figure 3.9).

3.3.1.2 Description

The main steps for learning of fuzzy intervals for an attribute i are outlined in Figure
3.8 and are explained in subsequent paragraphs.

The first step is the computation of crisp intervals from the list of values of attribute i
for all the graphs in input collection of graphs. This is straightforward and is achieved by
any standard data discretization technique. A survey of popular discretization techniques
is presented by Liu et al. [Liu et al., 2002].

We propose to use equally spaced bins for obtaining an initial set of crisp intervals, as
they avoid over-fitting and o↵ers FMGE a better generalization capability to unseen graphs
during graph embedding phase. Algorithm 3.3.1 outlines the pseudo-code for computing
an initial set of crisp intervals for an attribute i. It uses a pseudo-call ‘GetEqualSpacBin’

89

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

for getting an initial set of equally spaced bins. This pseudo-call refers to an appropriate
data discretization function (available in underlying implementation platform).

Another possibility is to use the equal frequency bins. An example of this type of
discretization is the technique proposed by [Colot et al., 1994] for discretization of con-
tinuous data. It is based on use of Akaike Information Criterion (AIC). It starts with
an initial histogram of data and finds optimal number of bins for underlying data. The
adjacent bins are iteratively merged using an AIC-based cost function until the di↵erence
between AIC-beforemerge and AIC-aftermerge becomes negative. Thus, we get an optimal
set of crisp intervals for the underlying data. This set of intervals is representative of the
underlying data. The use of an equal frequency discretization technique is demonstrated
in Section 5.4 for graph clustering.

The initial set of equally spaced bins (or equal frequency bins) are used to construct
a data structure, which stores the crisp intervals. This data structure is employed for
computing s

i

fuzzy intervals for attribute i.

After computing the initial set of crisp intervals, in next step, these crisp intervals are
arranged in an overlapping fashion to get fuzzy overlapping intervals. Normally trape-
zoidal, triangular and Gaussian arrangements are popular choices for fuzzy membership
functions [Ishibuchi and Yamamoto, 2003]. We propose to use the trapezoidal member-
ship function, which is the generally used fuzzy membership function. It allows a range
of instances to lie under full membership and assigns partial membership to the boundary
instances.

Figure 3.9 outlines a trapezoidal interval defined over crisp intervals. A trapezoidal
interval is defined by four points; as is given by points a, b, c, d in Figure 3.9.

ni

......

0

1
Membership

weight
a

b c

d

1 2 3 4 5 6 7 8 9

Figure 3.9: 5 fuzzy overlapping trapezoidal intervals (s
i

) defined over 9 equally spaced
crisp intervals (n

i

).

90

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

It is very important to highlight here that the first fuzzy overlapping trapezoidal inter-
val covers all values till �1 and the last fuzzy overlapping trapezoidal interval is limited
by 1. This makes sure that during the graph embedding phase every attribute instance
falls under the range of fuzzy overlapping trapezoidal intervals and it further strengthens
the generalization abilities of the method to unseen graphs.

A fuzzy interval defined in trapezoidal fashion assigns a membership weight of 1 (full
membership) between points b and c. The membership weight gradually approaches 0
as we move from b to a and from c to d. This trapezoidal behavior allows to assign
full membership, partial membership and no membership to attribute instances. This is
important to highlight here that the total membership assigned to an instance is always
exactly equal to 1 i.e. either one full membership or two partial memberships are assigned
to each attribute instance.

Algorithm 3.3.2 outlines the pseudo-code for computing fuzzy overlapping trapezoidal
intervals from an initial set of crisp intervals for an attribute i in input collection of graphs.
It first computes the initial set of crisp intervals using Algorithm 3.3.1 and then arranges
them in an overlapping trapezoidal fashion for obtaining a set of fuzzy overlapping trape-
zoidal intervals for attribute i. The number of fuzzy intervals for attribute i depends upon
the number of features desired for attribute i in FSMFV, and is controlled by parameter s

i

which can either be manually specified, automatically learned by using an equal frequency
based discretization or empirically learned and optimized on validation set.

The number of crisp intervals n
i

for desired number of fuzzy intervals s
i

is computed
by Equation 3.5.

n
i

= 2⇥ s
i

� 1 (3.5)

For the sake of continuity and readability, we have used the terms fuzzy intervals, fuzzy
overlapping intervals and fuzzy overlapping trapezoidal intervals interchangeably, in this
dissertation.

91

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

Algorithm 3.3.1: GetInitCrispInterval(listvaluesAttribute
i

, n
i

)

comment:Computes equally spaced crisp intervals.

comment:Requires: List of values of an attribute i

comment:Requires: Number of crisp intervals for attribute i (n
i

�2)
comment:Returns: ‘n

i

’ crisp intervals for attribute i

equallySpacedBins GetEqualSpacBin(listvaluesAttribute
i

, n
i

)

crispIntervals empty
st �1
en equallySpacedBins[1]

j 1
repeat8
>>>><

>>>>:

crispIntervals[j].start st
crispIntervals[j].end en
st en
en equallySpacedBins[j + 1]
j j + 1

until j>n
i

return (crispIntervals)

92

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

Algorithm 3.3.2: GetFuzzyOvlapTrapzInterval(listvaluesAttribute
i

, s
i

)

comment:Computes fuzzy intervals for an attribute i.

comment:Requires: List of values of an attribute i

comment:Requires: Number of fuzzy intervals for attribute i (s
i

�2)
comment:Returns: ‘s

i

’ fuzzy intervals for attribute i

n
i

 2 ⇤ s
i

� 1
crispIntervals GetInitCrispInterval(listvaluesAttribute

i

, n
i

)

fuzzyIntervals empty

fuzzyIntervals[1].a �1
fuzzyIntervals[1].b �1
fuzzyIntervals[1].c crispIntervals[1].end
fuzzyIntervals[1].d crispIntervals[2].end

j 1
jcrisp 0
repeat8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

j j + 1
jcrisp jcrisp+ 2
fuzzyIntervals[j].a fuzzyIntervals[j � 1].c
fuzzyIntervals[j].b fuzzyIntervals[j � 1].d

if (jcrisp+ 1 � n
i

)

then

8
<

:

fuzzyIntervals[j].c 1
fuzzyIntervals[j].d 1
break

fuzzyIntervals[j].c crispIntervals[jcrisp+ 1].end
fuzzyIntervals[j].d crispIntervals[jcrisp+ 2].end

until j � s
i

return (fuzzyIntervals)

93

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

3.3.2 Graph embedding phase

The graph embedding phase of FMGE is outlined in Figure 3.10. It employs the crisp
intervals and fuzzy intervals (from unsupervised learning phase) to compute respective
histograms for embedding an input attributed graph into a feature vector. This achieves
the mapping of the input graphs to appropriate points in a suitable vector space Rn.

Figure 3.10: The graph embedding phase of FMGE.

3.3.2.1 Input and output

The input to graph embedding phase of FMGE is an attributed graph AG
e

to be
embedded, as given by:

AG
e

= (V
e

, E
e

, µV

e , µE

e)

A second input to this phase is the s
i

fuzzy overlapping trapezoidal intervals for the
attribute i (from learning phase).

The graph embedding phase of FMGE produces a feature vector FSMFV
e

for input
graph AG

e

. The length of this feature vector is uniform for all graphs in an input collection
and is given by Equation 3.6.

94

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

Length of FSMFV = 2 +
X

s
i

+
X

c
i

(3.6)

where,
- 2 refers to the features for graph order and graph size,
-
P

s
i

refers to the sum of number of bins in fuzzy interval encoded
histograms for numeric information in graph (i.e. attribute i),

-
P

c
i

refers to the sum of number of bins in crisp interval encoded
histograms for symbolic information in graph.

The length of the feature vector is strictly dependent on the size of histograms used
for encoding the three levels of information. In order to give an idea on the maximum
length of the feature vector, we can safely precise that its upper limit is 150.

3.3.2.2 Description

The values of attribute i in input graph AG
e

are fuzzified by employing its s
i

fuzzy
intervals (learned during unsupervised learning phase) and trapezoidal membership func-
tion.

Mathematically, the membership function ↵ defined over a trapezoidal interval x is
given by Equation 3.7.

↵(x) =

��������

(x� a)/(b� a) a x<b
1 b x c

(x� d)/(c� d) c<x d
0 otherwise

��������
(3.7)

In Equation 3.7, x refers to an instance of attribute i to be fuzzified and a, b, c, d refers
to the limits of a trapezoidal fuzzy interval for attribute i. Function ↵(x) computes the
degree of membership of an instance x with the trapezoidal interval defined by a, b, c, d.
The possible memberships can be a full membership if x is between b and c, a partial
membership if x is between a and b or is between c and d, or it can be a no membership
if x is outside the interval a, b, c, d.

We represent the fuzzy histogram of attribute i as hnum
i

, which actually refers to the
fuzzy histogram for node degrees (hd in Figure 3.4), the fuzzy histograms for numeric node
attributes resemblance (hnr

d

and hnr
1

, hnr
2

, . . . , hnr
k

in Figure 3.4), the fuzzy histograms for
numeric and symbolic edge attributes resemblance (her

1

, her
2

, . . . , her
l

in Figure 3.4), the

95

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

fuzzy histograms for numeric node attributes (hn
1

, hn
2

, . . . , hn
k

in Figure 3.6) and the fuzzy
histograms for numeric edge attributes (he

1

, he
2

, . . . , he
l

in Figure 3.6). The fuzzy histogram
of an attribute i represents the embedding of attribute i for input graph AG

e

. For an input
graph AG

e

, the fuzzy histogram hnum
i

for attribute i is constructed by first computing the
degree-of-memberships of all instances of attribute i in AG

e

for the s
i

fuzzy intervals. And
then summing the memberships for each of the s

i

fuzzy interval.

Each symbolic attribute j in input graph AG
k

is encoded by a histogram of all its
possible modalities (or labels). This histogram encodes the number of instances for each
possible label of the symbolic attribute. We call this histogram as a crisp histogram
(in-contrary to fuzzy histogram for numeric attributes). We call a crisp histogram for a
symbolic attribute j as hsym

j

, which actually referrers to the crisp histograms for symbolic
node attributes resemblance (hnr

1

, hnr
2

, . . . , hnr
k

in Figure 3.4), the crisp histograms for sym-
bolic node attributes (hn

1

, hn
2

, . . . , hn
k

in Figure 3.6) and the crisp histograms for symbolic
edge attributes (he

1

, he
2

, . . . , he
l

in Figure 3.6).

After constructing the fuzzy interval encoded histograms for each numeric attribute i
and crisp histogram for each symbolic attribute j, the FSMFV

e

for input graph AG
e

is
constructed from the value of graph order, the value of graph size and fuzzy interval en-
coded histograms hnum

i

of its node degree, numeric node and edge attributes appended by
the crisp histograms hsym

j

for symbolic node and edge attributes. This gives an embedding
of the input graph AG

e

into a feature vector FSMFV
e

.

The histogram illustration of the graph embedding phase and the resulting feature
vectors for the example attributed graphs of basic geometric shapes are given in Figure
3.11. Two fuzzy trapezoidal intervals are used for embedding node degree ([�1,�1,1,2]
and [1,2,1,1]) whereas three fuzzy trapezoidal intervals are used for node attribute ‘L’
and edge attribute ‘RL’ ([�1, �1, 0.5, 1], [0.5, 1, 1.5, 2] and [1.5, 2, 1, 1]) and three
fuzzy intervals are used for embedding numeric resemblance attributes ([�1, �1, 0.25,
0.5], [0.25, 0.5, 0.75, 1.0], [0.75, 1.0, 1, 1]). Two fuzzy intervals are used for embedding
resemblance attribute for ‘Angle’ ([�1, �1, 0, 1.0], [0, 1.0, 1, 1]). The symbolic edge
attribute ‘Angle’ has two possible labels. Thus, in total the FSMFV for these graphs is
comprised of 23 features (1 for graph order, 1 for graph size, 2 for node degree, 3 for node
attribute ‘L’, 3 for resemblance on edge attribute ‘RL’, 2 for resemblance on edge attribute
‘Angle’, 3 for edge attribute ‘RL’, 2 for edge attribute ‘Angle’, 3 for resemblance on ‘L’, 3
for resemblance on ‘nodeDegree’).

In Figure 3.11, the histograms in first row for each graph, present the histograms for
graph order and graph size (left to right). The center row presents histograms for node
degree, node attributes L, resemblanceRL and resemblanceAngle respectively from left to
right. The last row presents the histograms for edge attributes RL, Angle, resemblanceL
and resemblanceNodeDegree respectively from left to right.

96

3.3. FRAMEWORK OF FUZZY MULTILEVEL GRAPH EMBEDDING (FMGE)

(a) |V |=4, |E|=4, edgeAtt={{.5, .5, .5, .5}, {B,B,B,B}, {.5, .5, .5, .5}, {1, 1, 1, 1}}, nodeDegree={2, 2, 2, 2},
nodeAtt={{2, 1, 2, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}} and

FSMFV = 4, 4, 0, 4, 0, 2, 2, 0, 0, 4, 0, 4, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 4

(b) |V |=4, |E|=3, edgeAtt={{1, 1, 0.5}, {B,B,B}, {1, 0.5, 0.5}, {0.5, 1, 0.5}}, nodeDegree={1, 2, 2, 1},
nodeAtt={{1, 1, 1, 0.5}, {⇤, 1, 0.5, ⇤}, {⇤, 1, 1, ⇤}} and

FSMFV = 4, 3, 2, 2, 1, 3, 0, 0, 1, 1, 0, 2, 1, 2, 0, 0, 3, 0, 2, 0, 0, 2, 1

(c) |V |=3, |E|=3, edgeAtt={{1, 1, 1}, {A,A,A}, {1, 1, 1}, {1, 1, 1}}, nodeDegree={2, 2, 2},
nodeAtt={{1, 1, 1}, {1, 1, 1}, {0, 0, 0}} and

FSMFV = 3, 3, 0, 3, 0, 3, 0, 0, 0, 3, 0, 3, 0, 3, 0, 3, 0, 0, 0, 3, 0, 0, 3

Figure 3.11: Histogram encoding of information and Fuzzy Structural Multilevel Feature
Vectors for the example attributed graphs.

97

3.4. CONCLUSION

3.4 Conclusion

In this chapter we have presented a method of explicit graph embedding - the Fuzzy
Multilevel Graph Embedding (FMGE). The method is a straightforward, simple and com-
putational e�cient solution for facilitating the use of graph based powerful representations
together with learning and computational strengths of state-of-the-art machine learning,
classification and clustering. The method exploits multilevel analysis of graphs for ex-
tracting three levels of information from graphs (i.e. graph level, structural level and
elementary level) and embedding them into numeric feature vectors. The method o↵ers
the embedding of attributed graphs with numeric as well as symbolic attributes on both
nodes and edges. It has built-in learning abilities for adapting its parameters to underlying
graph repositories.

However, the method is strongly dependent on the attributes of the nodes and edges in
the graph. Apart, from the elementary level details, the structural level details, which are
extracted by the homogeneity of subgraphs in the graph, are also defined in terms of the
node and edge attributes. The proposed feature vector lacks in information on the topology
of the graph. This makes this method very useful for the application domains which
extract attribute rich graphs from data - i.e. there are lots of meaningful attributes. The
method is less useful for application domains where graphs have less number of attributes
and topological details (without using attributes) are required to be extracted for graph
embedding.

FMGE is very useful for addressing the problems of graph classification, graph clus-
tering and graph retrieval for large graph repositories.

The classification of a query graph to one of the graph classes is an important prob-
lem domain of pattern recognition and is very interesting for graphics recognition, object
recognition and shape classification. For classification problems, generally, labeled learn-
ing and validation sets (with class information) are available. FMGE is fully capable
of exploiting the learning set for adapting its parameters, for histogram construction, to
underlying graphs and exploiting the validation set for optimizing these parameters and
selecting the best parameters for embedding underlying graphs. For such problem domains
the use of equal space bins permits FMGE to train on learning set, validate its parameters
on validation set and generalize to unseen graphs (in test set). Application of FMGE to
classification problem is further studied in Section 5.3 of the dissertation.

The clustering of a collection of graphs in groups (or clusters) is another very important
problem domain of pattern recognition, which is very interesting for real application do-
mains where the manual labeling of data is not possible or is expensive and an automatic
(or semi-automatic) solution is desired. For clustering problems, generally, no labeled
learning or validation sets are available. The goal of such problems is to identify groups
of graphs in a given collection of graphs. FMGE is fully capable of solving such problems.
It exploits the (same) collection of graphs during a first pass, for automatically adapting

98

3.4. CONCLUSION

its histogram construction parameters to underlying graph collection. And then during
a second pass it embeds the graphs in the collection by using the learned parameters for
histogram construction. For such problem domains the use of an equal frequency bins
permits FMGE to over-fit its parameters to the underlying graphs and to o↵er the best
possible partitioning of graphs into clusters.

For clustering problems, a second possible way of adapting the histogram construction
parameters of FMGE is by exploiting the domain knowledge. This semi-automatic way
allows a domain expert to manually adjust the number of intervals for (some or all) his-
tograms of the multilevel information. FMGE then uses these parameters for embedding
the graphs into numeric feature vectors. Application of FMGE to clustering problem is
further studied in Section 5.4 of the dissertation.

Graph retrieval and subgraph spotting is an other widely employed problem domain
of pattern recognition. It is useful for application domains where automatic indexing is
desired for graph repositories. The use of FMGE not only o↵ers automatic indexing of
graph repositories but also the ease of query by example (QBE) and the granularity of
focused retrieval. In next chapter we present details on the use of FMGE for building an
unsupervised framework for such application domains.

99

3.4. CONCLUSION

100

Chapter 4

Graph retrieval and subgraph
spotting through explicit graph
embedding

In this chapter we present a framework for automatic indexing of attributed graph repos-
itories. We demonstrate a practical application of Fuzzy Multilevel Graph Embedding
(FMGE) together with classification and clustering tools, for achieving graph retrieval
and subgraph spotting.

4.1 Introduction

This chapter presents detailed description on our proposed framework for automatic in-
dexing of graph repositories, for performing graph retrieval and subgraph spotting. Graph
retrieval refers to the problem of retrieving a graph from a graph repository, based on
its similarity with an example (or query) graph. Whereas, subgraph spotting takes the
graph retrieval to further granularity and refers to the problem of retrieving a graph from
a repository of graphs, based on the similarity of its subgraph with the example (or query)
graph.

In our proposed framework the subgraph spotting is achieved through explicit graph

101

4.1. INTRODUCTION

embedding. The framework employs FMGE as the graph embedding method and it works
in two phases: during an o↵-line unsupervised learning phase it constructs an index for the
graph repository and during an on-line spotting phase it exploits the index for achieving
subgraph spotting.

The automatic indexing of a graph repository is achieved during o↵-line learning phase,
where we:

i) break the graphs into 2-node subgraphs (a.k.a. cliques of order 2), which are primi-
tive building-blocks of a graph,

ii) embed the 2-node subgraphs into feature vectors by employing our recently proposed
explicit graph embedding technique,

iii) cluster the feature vectors in classes by employing a classic agglomerative clustering
technique,

iv) build an index for the graph repository and

v) learn a Bayesian network classifier.

The subgraph spotting is achieved during the on-line querying phase, where we:

i) break the query graph into 2-node subgraphs,

ii) embed them into feature vectors,

iii) employ the Bayesian network classifier for classifying query 2-node subgraphs and

iv) retrieve the respective graphs by looking-up in the index of the graph repository.

The graphs containing all query 2-node subgraphs form the set of result graphs for the
query. Finally, we employ the adjacency matrix of each result graph along-with a score
function, for spotting the query graph in it.

The method is equally applicable to a wide range of domains, o↵ering ease of query by
example (QBE) and granularity of focused retrieval.

In this chapter we present a detailed description of the two phases of our subgraph
spotting framework. To facilitate the explanation and comprehension of the presented
material, we have used the terms clique of order 2 and 2-node subgraph interchangeably
as appropriate.

An initial version of this work has been published in [Luqman et al., 2010b]. A com-
plete version of the work is published in [Luqman et al., 2011b] and [Luqman et al., 2012].

102

4.2. AUTOMATIC INDEXING OF A GRAPH REPOSITORY

4.2 Automatic indexing of a graph repository

The automatic indexing of a graph repository is performed during the o↵-line unsuper-
vised learning phase. This phase is outlined in Figure 4.1 and is explained in succeeding
paragraphs.

The input to the o↵-line unsupervised learning phase is a collection of graphs, given
by:

{AG
1

, AG
2

, ..., AG
k

, ..., AG
n

}

where, the kth graph is:

AG
k

= (V
k

, E
k

, µV

k , µE

k)

First of all, these graphs are preprocessed and new resemblance attributes are added
to nodes and edges of the graphs. These resemblance attributes incorporate information
on the homogeneity in neighborhood of nodes and edges. The way these attributes are
computed is described in section 3.2.1.2.

The next step of o↵-line unsupervised learning phase, extracts cliques of order 2 (i.e.
the 2-node subgraphs) from all graphs in the input collection of graphs.

Our choice of extracting the cliques of order 2 is partly because of the fact that a
clique of order 2 is the basic building block of a graph (with some structural information).
And partly because the extraction of cliques of higher order (i.e. � 2) is computational
expensive, whereas extraction of cliques of order 2 is simple and straight forward. It is
achieved by a mere look-up in the adjacency matrix of graph. The set of cliques for the
input collection of graphs is given by:

{{subAG
1

}, {subAG
2

}, ..., {subAG
k

}, ..., {subAG
n

}}

where the set of subgraphs for kth input graph (AG
k

) is:

subAG
k

= {subAG1

k

, subAG2

k

, ..., subAGi

k

}

and ith 2-node subgraph for kth input graph (AG
k

) is:

103

4.2. AUTOMATIC INDEXING OF A GRAPH REPOSITORY

subAGi

k

= (V i

k

, Ei

k

, µV

i

k , µE

i

k)

The next step in o↵-line unsupervised learning phase of our method, embeds the set of
2-node subgraphs by equal size feature vectors (the FSMFVs). This is achieved by Fuzzy
Multilevel Graph Embedding (FMGE). The set of FSMFVs for the input collection of
graphs is given by:

{{FSMFV
1

}, {FSMFV
2

}, ..., {FSMFV
k

}, ..., {FSMFV
n

}}

where, set of feature vectors for the 2-node subgraphs of kth input graph (AG
k

) is:

FSMFV
k

= {FSMFV 1

k

, FSMFV 2

k

, ..., FSMFV i

k

}

and the ith 2-node subgraph for kth input graph (AG
k

) is embedded by feature vector
FSMFV i

k

.

The feature vectors are clustered into classes by an agglomerative (also called hierarchi-
cal) clustering method. The clustering process starts by computing a pairwise city-block-
distance metric for the features in FSMFV and builds a linkage tree using the single link
algorithm. We use a method from [Okada et al., 2005] for getting an optimal cuto↵ for
clusters - [Okada et al., 2005] is based on an econometric approach to verify that variables
in multiple regression are linearly independent.

The use of agglomerative clustering approach keeps our method free of any parameter
for number of clusters. Each cluster represents (a class of) similar 2-node subgraphs.
The clustering step of (o↵-line unsupervised) learning phase assigns cluster labels to the
FSMFVs of 2-node subgraphs. The cluster labels for set of cliques (FSMFV

k

) in graph
AG

k

are given as:

{label FSMFV 1

k

, label FSMFV 2

k

, ..., label FSMFV i

k

}

where, label FSMFV i

k

represents the cluster label assigned to the FSMFV of the ith

clique in graph AG
k

.

The labeled FSMFVs are employed for learning a Bayesian network classifier. This
classifier serves as a computational e�cient tool for recognizing the 2-node subgraphs in
query subgraph, during the subgraph spotting phase of our method. All state of the
art classifiers are equally qualified to be used in place of the Bayesian network classifier.
Our choice of using a Bayesian network classifier is primarily motivated by the fact that

104

4.2. AUTOMATIC INDEXING OF A GRAPH REPOSITORY

the probabilistic reasoning of Bayesian networks enables our framework to handle the
uncertainties in the feature vector representation of the cliques in graphs.

Finally, as a last step of (o↵-line unsupervised) learning phase of our method, an index
is constructed for the input collection of graphs. This index maps a graph to the cliques
of order 2 in it. And the latter to the cluster labels. For a graph AG

k

, this is given by:

AG
k

vs subAG
k

= {subAG1

k

, subAG2

k

, ..., subAGi

k

}

vs {FSMFV 1

k

, FSMFV 2

k

, ..., FSMFV i

k

} vs

{label FSMFV 1

k

, label FSMFV 2

k

, ..., label FSMFV i

k

}

To facilitate the maintenance of information and ease of querying we propose to use a
standard DBMS for storing the index. Given a cluster label c, the index permits to retrieve
the list of cliques (which are assigned cluster label c) and the corresponding graphs.

The use of index is further elaborated in next section.

105

4.2. AUTOMATIC INDEXING OF A GRAPH REPOSITORY

OUTPUT
1. Bayesian network classifier
2. Index for graph repository

INPUT
Graph repository

{AG
1

, AG
2

, ..., AG
k

, ..., AG
n

}

Preprocessing: Add resemblance attributes

Extract 2-node subgraphs
{ {subAG

1

}, {subAG
2

}, ..., {subAG
k

}, {subAG
n

} }

Explicit graph embedding of 2-node subgraphs
into feature vectors

{ {FSMFV
1

}, ..., {FSMFV
k

}, ..., {FSMFV
n

} }

Cluster feature vectors in classes
(i.e. assign cluster-id to each 2-node subgraph)

Learn a Bayesian network classifier

Prepare an index for graph repository
(AG

k

vs {subAG
k

} vs {cluster-ids for {subAG
k

}})

Figure 4.1: Automatic indexing of a graph repository.

106

4.3. SUBGRAPH SPOTTING

4.3 Subgraph spotting

The subgraph spotting is performed during on-line querying phase. The goal of sub-
graph spotting phase is to retrieve the set of graphs based on a query graph AG

q

, and to
highlight the subgraphs in the retrieved graphs which are similar to AG

q

. This phase is
outlined in Figure 4.3 and is detailed in this section.

The input to on-line querying phase is a query graph comprising of at-least one clique
of order 2. As detailed in previous section for automatic indexing of graph repository the
query graph (AG

q

) also passes through the steps of preprocessing and extraction of cliques
of order 2, as given by:

subAG
q

= {subAG1

q

, subAG2

q

, ..., subAGi

q

}

and ith 2-node subgraph for query graph (AG
q

) is:

subAGi

q

= (V i

q

, Ei

q

, µV

i

q , µE

i

q)

The next step is the embedding of the cliques of order 2 in query graph into feature
vectors ({FSMFV

q

}), as given by:

FSMFV
q

= {FSMFV 1

q

, FSMFV 2

q

, ..., FSMFV i

q

}

and the ith clique of order 2 in the query graph (AG
q

) is embedded by feature vector
FSMFV i

q

.

During the next step of on-line querying phase the Bayesian network classifier is em-
ployed to classify FSMFV of each query 2-node subgraph ({subAG

q

}) as belonging to one
of the cluster labels.

For each query 2-node subgraph, the Bayesian network classifier outputs a list of
posterior-probabilities for all clusters. The query 2-node subgraph is classified as high-
est posterior-probability cluster.

We look-up this cluster label in repository index for getting a list of possible combi-
nations of 2-node subgraphs corresponding to query. The graphs containing all the query
2-node subgraphs ({subAG

q

}) form the set of result graphs for the query graph AG
q

.

107

4.3. SUBGRAPH SPOTTING

The result graph set is given by:

{result AG
1

, result AG
2

, ..., result AG
k

, ..., result AG
m

}

where, the kth result graph is:

result AG
k

= (V
k

, E
k

, µV

k , µE

k)

For spotting the query graph AG
q

in a result graph result AG
k

, we employ the adja-
cency matrix of graph result AG

k

along-with a score function.

For two nodes “i” and “j”, the possible values in the adjacency matrix are summarized
in Equation 4.1. The adjacency matrix of graph result AG

k

has a value of “0” if there is
no edge between “i” and “j” in the original graph result AG

k

, a value of “1” if there is
an edge between “i” and “j” in the original graph result AG

k

and a value of “2” if one of
the query 2-node subgraphs is classified (by Bayesian network) as belonging to the cluster
of this 2-node subgraph (which is comprising of edge between “i” and “j”).

result AG
k

(i, j) =

������

0 no edge between i and j
1 an edge between i and j
2 2-node subgraph in result

������
(4.1)

The query graph AG
q

is finally spotted in the result graph result AG
k

, by looking up
in the neighborhood of each 2-node subgraph of result AG

k

which is in the result i.e. each
“AG

k

(i, j) = 2” in the adjacency matrix of result graph result AG
k

.

We explore “w” connected neighbors of each “result AG
k

(i, j) = 2”. The parameter
“w” is proportional to the graph order of query graph AG

q

(|V
q

|). This ensures that the
retrieved graph contains a subgraph proportional in size to query graph.

108

4.3. SUBGRAPH SPOTTING

We compute a score for each “result AG
k

(i, j) = 2” using Equation 4.2.

score =
2X

z=0

(z ⇥ |z|
w

) (4.2)

In Equation 4.2,
z is a value in the adjacency matrix (either 0,1 or 2),
|z| is number of times the value z occurs in neighborhood
and
w is number of connected neighbors that are looked-up.

For a clique in result graph result AG
k

having the same cluster label as one of the
cliques in the query graph AG

q

, Equation 4.2 actually computes a score considering w
adjacent neighbors in the adjacency matrix of “result AG

k

(i, j) = 2”. The score is com-
puted by summing the number of cliques of order 2 in the w adjacent neighbors (z = 1)
and the number of cliques that have the same cluster label as one of the cliques in query
graph AG

q

(z = 2). The latter is given double importance than the former. The sum is
normalized by the size w of the neighborhood under consideration.

The computed score of “result AG
k

(i, j) = 2” gives a confidence value for subgraph
spotting of query graph AG

q

in result graph result AG
k

. Score is calculated for subgraph
around all cliques in a result graph having “result AG

k

(i, j) = 2”. And then based on a
threshold on the confidence values (score), the subgraphs in the result graph result AG

k

are discarded or included in the final results for subgraph spotting.

Figure 4.2 illustrates the computation of the score for a subgraph in an example adja-
cency matrix. The score is computed for a clique in result graph result AG

k

having the
same cluster label as one of the cliques in the query graph AG

q

(i.e. result AG
k

(i, j) = 2).
The value of w is taken to be 9.

In Figure 4.2, score is computed for a clique in the result graph result AG
k

. This
clique is highlighted as green in the adjacency matrix of graph result AG

k

. The cliques
highlighted as yellow, are the cliques that have the same cluster label as a clique in query
graph.

The cliques highlighted as cyan are the cliques of the graph result AG
k

which do not
have the same label as a clique of the query graph. The inclusion of these cliques does not
necessarily mean that the method finds only connected subgraphs in the graph.

109

4.3. SUBGRAPH SPOTTING

Figure 4.2: Illustration of score function computation for a subgraph around a clique of
order 2 in a retrieved graph.

110

4.3. SUBGRAPH SPOTTING

INPUT
Query graph (AG

q

)

OUTPUT
Set of m graphs which contain query graph
{resultAG

1

, resultAG
2

, ..., resultAG
m

}

Preprocessing: Add resemblance attributes

Extract 2-node subgraphs
{ {subAG

q

} }

Explicit graph embedding of 2-node
subgraphs into feature vectors

{ {FSMFV
q

} }

Classify feature vectors ({FSMFV
q

}) using
Bayesian network classifier

Look-up in repository index and retrieve graphs
{resultAG

1

, resultAG
2

, ..., resultAG
m

}

Spot query subgraph in retrieved graphs

Figure 4.3: Graph retrieval and subgraph spotting.

111

4.4. CONCLUSION

4.4 Conclusion

In this chapter, we have presented a method of graph retrieval and subgraph spotting
through explicit graph embedding. The method is a straightforward, simple and computa-
tional e�cient solution clearly illustrating the use of graph based powerful representations
together with learning and computational strengths of machine learning, classification and
clustering. The method does not rely on any domain specific details and o↵ers a very gen-
eral solution to the problem of subgraph spotting. This enables its less expensive and fast
deployment to a wide range of application domains. Apart from the advantages of in-
corporating learning abilities in structural representations (without requiring any labeled
training set) and o↵ering the ease of query by example (QBE) and the granularity of
focused retrieval, the system does not impose any strict restrictions on the size of query
subgraph.

We have used the cliques of order 2 for constructing the index of the graph repository. A
clique of order 2 represents the basic structural unit of a graph. It contains discriminatory
information that FMGE extracts and embeds into feature vector. The computation for
obtaining the list of cliques of order 2 (for a given graph) is simple and is achieved by
a simple lookup in the adjacency matrix of graph. Our choice of a low order clique for
indexing a graph repository is also motivated from the fact that the extraction of cliques
of higher order (� 2) is computational expensive and is a combinatorial problem.

112

Chapter 5

Experimentations

In this chapter we present the experimental evaluations of FMGE for the problems of
graph clustering and graph classification. We present the experimental evaluations of the
framework for automatic indexing of graph repositories for graph retrieval and subgraph
spotting, with an application to content spotting in graphic document image repositories.
We provide experimental results for the application of the thesis work to the real problems
of recognition, indexing and retrieval of graphic document images.

5.1 Introduction

The experimental evaluation of FMGE is performed on various standard graph datasets,
by International Association of Pattern Recognition’s Technical Committee on graph-based
representations (TC-15), from the fields of document image analysis, graphics recognition
and object recognition, in context of clustering, classification, retrieval and subgraph spot-
ting tasks.

A first set of experimentations is performed with an aim to confirm that FMGE and
the subsequent classification and clustering in real vector spaces is applicable to di↵erent
graph classification and graph clustering problems, and also to confirm that in certain
cases it outperforms the classical techniques for the latter.

113

5.2. GRAPH DATABASES

A second set of experimentations is performed to evaluate the graph retrieval and
subgraph spotting framework, with an application to content spotting in graphic document
image repositories.

Experimental results for the application of the thesis work to the real problems of
recognition, indexing and retrieval of graphic document images are also presented.

5.2 Graph databases

IAM graph database: Six datasets from IAM graph database repository have
been employed for the experimentations. The IAM graph database repository is originally
proposed by [Riesen and Bunke, 2010c]. These graph datasets are publicly available1. The
IAM graph database repository contains graphs from the field of document image analysis
and graphics recognition. The six datasets used for the experimentation include three
versions of letter dataset (low, medium and high level of distortions), GREC dataset,
fingerprint dataset and the mutagenicity dataset.

Table 5.1 summarizes the details on the graphs in these datasets.

Table 5.1: IAM graph database details.

Dataset Size Classes Avg Max Attributesa

Train Valid Test |V | |E| |V | |E| V E

Letter LOW 750 750 750 15 4.7 3.1 8 6 2;0 0;0

Letter MED 750 750 750 15 4.7 3.2 9 7 2;0 0;0

Letter HIGH 750 750 750 15 4.7 4.5 9 9 2;0 0;0

GREC 836 836 1628 22 11.5 12.2 25 30 2;1 1;1

Fingerprint 500 300 2000 4 5.4 4.4 26 25 2;0 1;0

Mutagenicity 500 500 1500 2 30.3 30.8 417 112 0;1 1;0

a Number of attributes is given as a pair “numeric;symbolic”.

1
http://www.greyc.ensicaen.fr/iapr-tc15/links.html

114

http://www.greyc.ensicaen.fr/iapr-tc15/links.html

5.2. GRAPH DATABASES

GEPR graph database: GEPR graph database [Foggia and Vento, 2010] has been
employed for experimentation on graphs from the field of object recognition. The GEPR
database is comprised of three graph datasets, extracted from large publicly available image
repositories, namely the Amsterdam Library of Object Images (ALOI), the Columbia
Object Image Library (COIL) and the Object Data Bank by Carnegie-Mellon University
(ODBK).

The summary of performance evaluation subset of ALOI, COIL and ODBK graph
datasets in GEPR graph database, together with some characteristic properties, is given
in Table 5.2.

Table 5.2: GEPR graph database details.
Dataset Size Classes Avg Max Attributesa

|V | |E| |V | |E| V E
ALOI 1800 25 18.37 17.25 134 156 2;0 0;0
COIL 1800 25 34.88 32.33 100 92 2;0 0;0
ODBK 1248 104 56.91 54.37 528 519 2;0 0;0
a Number of attributes is given as a pair “numeric;symbolic”.

Further details on the IAM and GEPR graph datasets are presented in Appendix A of
this dissertation.

115

5.2. GRAPH DATABASES

SESYD graph database: A new graph repository is constructed by extracting
graphs from images of architectural floor plans and electronic diagrams in SESYD image
dataset [Delalandre et al., 2010], for experimentation of the framework for automatic in-
dexing of graph repositories for graph retrieval and subgraph spotting. The corresponding
graph repository is made publicly available2 for academia and scientific community for
research purposes.

The summary of SESYD graph datasets, together with some characteristic properties,
is given in Table 5.3.

Table 5.3: SESYD graph database details.
Image Attributed graph

Electronic diagrams

Backgrounds 8 Avg. order 212
Models 21 Avg. size 363
Symbols 9600 Node attribs. 4

Edge attribs. 2
Documents 800 Graphs 800
Queries 1000 Graphs 1000

Architectural floor plans

Backgrounds 2 Avg. order 359
Models 16 Avg. size 733
Symbols 4216 Node attribs. 4

Edge attribs. 2
Documents 200 Graphs 200
Queries 1000 Graphs 1000

The extraction of graphs from SESYD image dataset is explained in detail in Appendix
B of the dissertation.

2
http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip

116

http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip

5.3. GRAPH CLASSIFICATION

5.3 Graph classification

The graph classification experimentation has been performed on the six graph datasets
from IAM graph database repository.

The three distorted versions of letter graph dataset, GREC graph dataset, fingerprint
graph dataset and the mutagenicity graph dataset are all composed of training, validation
and test sets. We have employed the training set for unsupervised learning phase of FMGE
and the validation set to optimize the number of fuzzy intervals for structural level and
elementary level information of graphs.

To obtain the initial set of crisp intervals for graph classification experimentation, we
have used an equal spaced discretization technique. The use of an equal spaced discretiza-
tion technique demonstrates the learning abilities of FMGE and its generalization abilities
to unseen graphs in test set. Equal spaced discretization allows FMGE to ignore the shape
of distribution of the attribute i instances (structural and elementary level numeric infor-
mation), for learning the s

i

fuzzy intervals for it. The shape of this distribution is not
important and keeping FMGE independent of it allows FMGE to generalize to graphs in
many diverse test sets.

The number of fuzzy intervals to be used for an attribute i in a given graph dataset
has been optimized empirically on the respective validation set. The experimentation was
repeated for 2 to 30 fuzzy intervals for each attribute i. The number of intervals maximizing
the classification rate on validation set were used for evaluating the performance of FMGE
on graphs in test set.

For graph classification experimentation we have employed a nearest neighbor classifier
(1-NN) with Euclidean distance.

Table 5.4 presents the classification results of FMGE and compares them with the best
state-of-the-art results from dissimilarity based graph embedding technique of Bunke et
al. [Bunke and Riesen, 2011b], on these datasets.

Contrary to our choice of nearest neighbor classifier Bunke et al. have employed an
SVM for their experimentation; which is a more sophisticated classifier. For comparison
purposes this does not make a great di↵erence and the use of a sophisticated classifier will
only increase the performance of our graph embedding method.

117

5.3. GRAPH CLASSIFICATION

The first column of Table 5.4 presents the classification results for the reference system.
The reference system is comprised of a graph edit distance based nearest neighbor classifier
[Bunke and Riesen, 2011b]. The choice of reference system is a direct outcome of the fact
that there is a lack of general classification algorithms that can be applied to graphs.
One of the few classifiers directly applicable to arbitrary graphs is the k-nearest-neighbor
classifier (k-NN). Given a labeled set of training graphs, an unknown graph is assigned
to the class that occurs most frequently among the k nearest graphs (in terms of edit
distance) from the training set. The decision boundary of this classifier is a piecewise
linear function which makes it very flexible [Bunke and Riesen, 2011b]. This classifier in
the graph domain also serves as the reference system for our experimentation.

Table 5.4 presents the classification results for two setups of FMGE. These setups refer
to the way in which we have computed edge attributes resemblance for nodes. Column 3
shows the classification results, when the average (or mean) resemblance of the couple of
edges is used for defining edge attributes resemblance for nodes - the AVG setup. Column
4 shows the classification results, when the standard deviation of the resemblance of the
couple of edges is used for defining edge attributes resemblance for nodes - the STD setup.
Both setups give the same classification rates except for fingerprint graphs. This illustrates
that for these graph datasets the resemblance between the couple of edges for the nodes
remains stable in both AVG and STD setups.

The three letter graph datasets, the GREC graph dataset, the fingerprint graph dataset
and the mutagenicity graph dataset are all comprised of graphs with only two numeric
attributes (x,y position of primitive in underlying image) on nodes. The only dataset
among these is the GREC graph dataset which has one symbolic attribute on nodes in
addition to the numeric position attributes. Similarly only GREC graphs, fingerprint
graphs and mutagenicity graphs have attributes on edges.

Given the fact that the structural and elementary level information extracted by FMGE
is directly or indirectly linked with the attributes of nodes and edges in graphs. In our
opinion the attributes, on graphs in these six datasets, are not enough for extracting a lot
of discriminatory information by FMGE. However, even then the results are comparable
to state-of-the-art results on these datasets.

FMGE has the highest classification rate on GREC graphs and mutagenicity graphs.
For letter low graphs and fingerprint graphs the FMGE results are comparable to the state-
of-the-art results and the reference system. But for letter MED graphs and letter HIGH
graphs the FMGE results are not very good. This is because of the fact that the level of
distortion for these graphs is very high. The medium and high levels of distortions totally
change the topology of the graphs (and the underlying letter becomes unrecognizable).
Most of the letters that undergo distortions of medium and high strength are di�cult to
be recognized, even for a human observer [Riesen, 2010].

118

5.3. GRAPH CLASSIFICATION

If more information is put on the nodes and edges of the graphs the FMGE results
for these datasets will be improved; as FMGE extracts most of the information from node
and edge attributes (directly or indirectly). More interesting information that may be
extracted from underlying image content may include color, shape, rotation and scale
information. More details on the nodes and edges of graphs will result into extraction
(and eventually embedding) of more discriminatory information by FMGE. The latter will
result into improved classification results.

119

5.3. GRAPH CLASSIFICATION

T
ab

le
5.
4:

E
xp

er
im

en
ta
l
re
su
lt
s
(%

),
fo
r
gr
ap

h
cl
as
si
fi
ca
ti
on

on
IA

M
gr
ap

h
d
at
ab

as
e
re
p
os
it
or
y.

D
a
ta

se
t

G
ra

p
h

e
d
it

d
is
ta

n
c
e

D
is
si
m
il
a
ri
ty

F
M

G
E

F
M

G
E

b
a
se
d

re
fe
re

n
c
e
sy

st
e
m

b
a
se
d

e
m
b
e
d
d
in
g

re
se
m
b
la
n
ce
:A
V
G

re
se
m
b
la
n
ce
:S
T
D

B
u
n
ke

et
al
.
[B
u
n
ke

an
d
R
ie
se
n
,
20

11
b
]

[k
-N

N
cl
as
si
fi
er
]

[S
V
M

cl
as
si
fi
er
]

[1
-N

N
cl
as
si
fi
er
]

[1
-N

N
cl
as
si
fi
er
]

L
et
te
r
L
O
W

99
.3

99
.3

97
.1

97
.1

L
et
te
r
M
E
D

94
.4

94
.9

75
.7

75
.7

L
et
te
r
H
IG

H
89

.1
92

.9
60

.5
60

.5

G
R
E
C

82
.2

92
.4

9
7
.5

9
7
.5

F
in
ge
rp
ri
nt

79
.1

74
.9

73
.5

M
u
ta
ge
n
ic
it
y

66
.9

6
8
.6

6
8
.6

120

5.4. GRAPH CLUSTERING

5.4 Graph clustering

The graph clustering experimentation has been performed on the six graph datasets
from IAM graph database repository (the three distorted versions of letter graph dataset,
GREC graph dataset, fingerprint graph dataset and the mutagenicity graph dataset) and
the GEPR graphs.

In this section we present details on the two sets of experimentations.

IAM graph database: The six graph datasets, namely, three letter graph datasets,
GREC graph dataset, fingerprint graph dataset and the mutagenicity graph dataset, were
employed for graph clustering experimentation. We merged the graphs in training, vali-
dation and test sets of the respective graph datasets for constructing datasets for graph
clustering experimentation.

Generally, for clustering tasks no separate learning set is available. This scenario is very
well simulated by our experimentation. The unsupervised learning phase of FMGE used
the graphs to be clustered for learning the fuzzy intervals for various numeric attributes
in graphs.

The experimentation was performed for each of the six graph datasets, independent
of other datasets. For each of the six graph datasets, during a first pass (unsupervised
learning phase) FMGE learned a set of fuzzy intervals for the numeric attributes (structural
and elementary level information in graphs). These fuzzy intervals were then employed
during the graph embedding phase of FMGE.

For clustering experimentation we have used a more sophisticated discretization tech-
nique for obtaining the initial set of crisp intervals. This technique is originally proposed
by [Colot et al., 1994] for discretization of continuous data and is based on use of Akaike
Information Criterion (AIC). It starts with an initial histogram of data and finds optimal
number of bins for underlying data. The adjacent bins are iteratively merged using an
AIC-based cost function until the di↵erence between AIC-beforemerge and AIC-aftermerge
becomes negative. Thus, we get an optimal set of crisp intervals for the underlying data.
This set of intervals could be safely termed as equal frequency intervals and is representa-
tive of the underlying data.

In other words we can say that the number of fuzzy intervals for node degree, numeric
node attributes and numeric edge attributes is calculated from the spread of the respective
attributes values for the graph dataset. The resulting fuzzy intervals are true representative
of the shape of distribution of these attribute values and are very interesting for embedding
the respective graphs by FMGE.

121

5.4. GRAPH CLUSTERING

The use of an equal frequency discretization technique (without any training set)
demonstrates the unsupervised learning abilities of FMGE in scenarios where no sepa-
rate training set is available.

We have employed the well known and popular k-means clustering paradigm with
Euclidean distance and random non-deterministic initialization, for our graph clustering
experimentation.

Figure 5.1 presents the Silhouette metric [Kaufman and Rousseeuw, 1990] for datasets
in IAM graph database repository, for analyzing the quality of clustering. The Silhou-
ette metric is a standard cluster fitness validation metric. It measures the standardized
di↵erence between separation of clusters and the average spread of clusters. The average
Silhouette width over all clusters is a value in the range [-1, 1] - the closer this value is to
1 the better is the cluster quality.

The curves in Figure 5.1 presents the Silhouette metric for 2 to 25 clusters. The number
of classes in the graph datasets are given in Table 5.1. For example, the mutagenicity
graphs originally have 2 classes and the Silhouette metric for mutagenicity graphs for 2
classes in Figure 5.1 is 0.58. Figure 5.1 shows that the Silhouette metric for the actual
number of clusters in each of the datasets, is always near or superior to 0.2. The latter is
a generally used threshold for Silhouette metric, for compact, better separable and good
structure clusters.

These results demonstrate the graph clustering abilities of FMGE and highlight its
unsupervised learning capabilities i.e. FMGE does not require any labeled training set.

122

5.4. GRAPH CLUSTERING

(a) Letter LOW (b) Letter MED

(c) Letter HIGH (d) GREC

(e) Fingerprint (f) Mutagenicity

Figure 5.1: Number of clusters versus average Silhouette width for k-means clustering, for
IAM graph database repository.

123

5.4. GRAPH CLUSTERING

Apart from the Silhouette metric we have also evaluated the quality of clustering
achieved by FMGE by the percentage of correctly clustered graph instances. Table 5.5
presents the graph clustering experimentation results for the actual number of classes in
various datasets of IAM graph database repository.

Table 5.5: Quality of k-means clustering for IAM graph database repository.

Dataset FMGE feature vector space

correctly clustered graphs (%)

Letter LOW 89

Letter MED 60

Letter HIGH 41

GREC 82

Fingerprint 57

Mutagenicity 82

For each of the six graph datasets, we have used the actual number of classes in dataset
(see Table 5.1) as the number of clusters to be found by k-means clustering. The presented
results show the quality of k-means clustering in the FSMFV feature space. It has been
calculated as the ratio of correctly clustered graphs to the total number of graphs in a
given dataset. For example, a 89% clustering quality for letter LOW graph dataset means
that 89% of the graphs are correctly clustered.

These results demonstrate that the proposed methodology of first embedding graphs
into feature vectors and then applying a clustering technique has the significant potential
to turn an impossible operation in original graph space into a realizable operation with an
acceptable accuracy in the resulting FSMFV feature vector space.

The percentage of correctly clustered graphs for letter LOW graphs, GREC graphs and
mutagenicity graphs is very good (�82%). However, for letter MED graphs and fingerprint
graphs its not so good. And for letter HIGH graphs the resulting clustering quality is bad.
The low clustering quality for letter HIGH graphs is because of the fact that the high level
of distortions applied to graphs in this dataset entirely changes the topology of the graphs.
This e↵ects the FSMFV of the graphs in this dataset and results into too much overlap
between the clusters.

124

5.4. GRAPH CLUSTERING

Apart from this another reason, as we have already discussed for graph classification
experimentation results, is that there are not enough attributes on the nodes and edges of
graphs. FMGE extracts all the structural and elementary level information from graphs by
exploiting the node and edge level attributes. The less number of attributes on nodes and
edges (and lack of meaningful and discriminatory attributes) is one of the main reasons
for low quality of clustering for these datasets.

If more meaningful and discriminatory attributes are attached to the nodes and edges
of graphs, the quality of clustering achieved by FMGE will certainly improve. The latter is
because of the fact that the attributes are critical to provide the structural and elementary
level details to FMGE.

125

5.4. GRAPH CLUSTERING

GEPR graph database: A second set of clustering experimentation was performed
on GEPR graphs.

This part of experimentations has been published in [Luqman et al., 2010a] and is
reproduced here.

Each of the three graph datasets in this repository are employed independently of
others, for graph clustering experimentation. Like the first set of graph clustering exper-
imentation (i.e. IAM graph database repository), during unsupervised learning phase we
employed the AIC based equal frequency discretization technique for obtaining an initial
set of crisp bins. These bins were then arranged in fuzzy overlapping trapezoidal intervals
for embedding the details of graphs into feature vectors.

The scripts from GEPR graph database repository were employed to evaluate the
performance index for the clustering of the resulting feature vectors. For evaluating the
quality of clustering these scripts employ the clustering validation index to evaluate the
separation between classes, as proposed by [Foggia and Vento, 2010]. This cluster valida-
tion index is based on original C index. For computing it first the Euclidean distances
d
ij

between each pair of graphs (feature vectors) is computed. Given the distances, the
C index is defined as follows: first the set S

w

of the distances d
ij

such that g
i

and g
j

lie
in the same class is computed; M is the cardinality of S

w

. Then, the sets S
min

and S
max

are computed taking respectively the M shortest distances and the M largest distances
among all the possible values of d

ij

. Finally, the index is computed as:

C = sum(S

w

)�sum(S

min

)

sum(S

max

)�sum(S

min

)

The smaller the value, the better is the separation of the classes - the index value is
in the interval [0, 1], reaching 0 in the ideal case in which all the inter-class distances are
smaller than all the intra-class distances [Foggia and Vento, 2010].

126

5.4. GRAPH CLUSTERING

Table 5.6 provides the cluster validation index for graph datasets of three image
databases in GEPR graph repository.

Table 5.6: Performance indexes for GEPR graphs.

Dataset Performance index

ALOI 0.379

COIL 0.377

ODBK 0.355

The clustering results for graphs in GEPR graph repository are adequate and are not
very good. The GEPR graphs have attributes only on nodes. The 2 node attributes encode
the size and the average color of the image area (represented by RGB values) represented by
a node. These are numeric attributes and were encoded by fuzzy overlapping trapezoidal
intervals.

The lack of attributes on edges and less number of attributes on nodes is the main
reason for average clustering quality. As we have detailed in the discussion on experi-
mentation for IAM graph database, all the information extracted by FMGE is directly
or indirectly related to attributes of nodes and edges. If there are not enough attributes
on nodes and edges of graphs, FMGE is not able to embed the graphs into discriminant
feature vectors. For graphs extracted from object images a very important attribute that
can be extracted from images is the relations between neighboring parts of the object. In
a region adjacency graph this could be represented by the relationship between adjacent
regions of the image.

The addition of more attributes on nodes and edges of the graphs will enable FMGE
to extract and eventually embed more information on graphs. This will result into more
discriminant feature vectors which will result into higher quality clustering.

127

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

5.5 Graph retrieval and subgraph spotting: an application
to content spotting in graphic document image reposi-
tories

Subgraph spotting is a very interesting research problem for various application do-
mains where the use of a relational data structure is mandatory. The Query By Example
(QBE) based content retrieval systems for graphic document image repositories is a clas-
sical application domain of subgraph spotting.

The graph retrieval experimentations have been performed on SESYD graphs (Ta-
ble 5.3), presenting an application of the proposed framework to the problems of query
by example (QBE) and focused retrieval for graphic document image repositories. The
graphs have been extracted from two document image repositories comprised of electronic
diagrams and architectural floor plans.

The extraction of the graphs is detailed in Appendix B. A document image is repre-
sented by a graph in our system. To facilitate the explanation we have used the two terms
interchangeable while discussing the experimental results.

An initial version of this work has been published in [Luqman et al., 2010b]. A com-
plete version of the work is published in [Luqman et al., 2011b] and is reproduced here.

In last few years, content based information retrieval (CBIR) systems for graphic doc-
ument image repositories, have emerged as an important application domain. This has
resulted into a gradual shift of attention from the hard problems of symbol recognition
and localization to the relatively softer problem of content spotting (a.k.a. symbol spot-
ting). This is a direct outcome of growing size of document image repositories and the
increasing demand from users to have an e�cient browsing mechanism for graphic con-
tent. The format of these documents restricts the use of classical keyword based index-
ing mechanisms. Thus a very interesting research problem is to investigate into mech-
anisms of automatically indexing the content of graphic document images; in order to
o↵er to users the ease of query by example (QBE) and granularity of focused retrieval.
Graphs have remained a very popular choice of graphics recognition research community
[Lladós et al., 2002, Tombre et al., 2006] and keeping in view the wide use of graph based
representations for graphic document images, the problem of content spotting in graphic
document image repositories, in fact, becomes the problem of subgraph spotting.

In our experimentation, the electronic diagrams and architectural floor plans graph
repositories were treated independently of each other for learning and querying phases of
the system.

The unsupervised learning phase was performed o↵-line for automatically indexing the
graphs in each of these repositories. This was followed by posing 1000 queries (during an

128

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

on-line phase) to each of the repositories for evaluating the performance of the system.

During the automatic indexing phase of graph repositories, a total of 516714 2-node
subgraphs (i.e. cliques of order 2) were extracted for electronic diagrams and 305824 2-
node subgraphs (i.e. cliques of order 2) for architectural floor plans. These cliques were
clustered into 455 classes for electronic diagrams and 211 classes for architectural floor
plans. The indexing of electronic diagrams graph repository took 17 hours on a standard
PC with 2GB of RAM and the subgraph spotting was performed in real-time.

For evaluating the performance of our method, we have employed the standard preci-
sion and recall measure. Figure 5.2 presents the precision and recall plot for the central
tendency of the queries of respective attributed graph datasets. The curves are obtained
by retrieving the graphs until the system achieves 100% recall.

It is important to highlight here, that the results in Figure 5.2 shows the retrieval
performance of the system. This means that a graph (a document image) in result is
considered a good retrieval, if it contains the query graph (query graphic content). The
method highlights the spotted subgraphs in the result graphs (zones in the retrieved docu-
ment images) but we have not taken them into account for computing the precision recall
curve. Our this choice is mainly because of the reason that there is no widely accepted
(standard) mechanism for focused retrieval results.

129

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

Figure 5.2: Precision and recall plot for graph retrieval from SESYD graph database.

130

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

The focused retrieval performance of the system was evaluated manually for a subset
of queries. The results are not very good but are encouraging. Some snapshots of the
focused retrieved results for query images are presented in Figure 5.3 and Figure 5.4. As
show in Figure 5.3, if the document image contains only one instance of the query symbol,
the focused retrieval results are very good. The system retrieves only relevant document
images and correctly highlights the interesting zones (corresponding the to query image)
in the retrieved document images.

Figure 5.4 shows an example for the scenario where the system confuses the interesting
zones in the retrieved document images. The case when a retrieved document image
contains multiple instances of the query image is a good example of latter. The system
wrongly highlights the zones in the vicinity of the interesting zones (corresponding to the
query image).

This behavior of the system is mainly influenced by the size of the subgraph for spotting
the query graph in a retrieved graph. To recall the reader: this is controlled by the
parameter w for computing score of zones in retrieved graphs. The calculation of score
has already been discussed in detail in Section 4.3 of the dissertation.

131

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

(a) Query image.

(b) Documents retrieved.

Figure 5.3: A snapshot of retrieved results for a query image (single instance of query
symbol).

132

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

(a) Query image.

(b) Documents retrieved.

Figure 5.4: A snapshot of retrieved results for a query image (multiple instances of query
symbol).

133

5.5. GRAPH RETRIEVAL AND SUBGRAPH SPOTTING

The graph retrieval experimentation results demonstrate that the proposed method of
graph embedding (FMGE) is capable of automatically indexing graph repositories and is
capable of maintaining a high precision rate for su�ciently large graph repositories.

The performance of the system strongly depends upon the graph extraction phase. In
our case, we have used a graph extraction method, which is based on a prior vectoriza-
tion phase [Qureshi et al., 2007]. The employed vectorization technique approximates the
circles and arcs by a set of straight lines. A small distortion in the shape of underlying
content results into a change in topology of the graph and it e↵ects the graph embedding
phase of the system. Because of the latter and the fact that architectural floor plans are
comprised of many symbols with arcs and circles, the system has a low performance for
this dataset.

The number of clusters and the size of the resulting index is also very important and
influences the performance of the system. We have used an agglomerative clustering and
used an automatic cut-o↵ for determining the number of clusters for graphs in a repository.
This makes the system independent of manually setting the number of clusters. Too large
number of classes means that the system indexes too many classes of the cliques of order
2. On the other hand, too small number of clusters means that the system merges the
classes of the cliques of order 2. The quality of the learned classifier, in both cases, will be
a↵ected. And during the graph spotting phase the system will confuse to determine the
class of the cliques of order 2 in query graph. The number of clusters, size of the index
and the quality of the learned classifier are inter linked and depend on each other.

However, generally (for the given datasets) the system is able to maintain a high
precision value for the series of di↵erent recall values. This provides a very interesting
solution for the automatic indexing of graph repositories for retrieval and (specially for)
browsing of content in graph representation of graphic document image repositories.

134

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6 Application of FMGE to graphics recognition

This section demonstrates a real application of FMGE to the problem of graphics
recognition. We have achieved graphic symbol recognition by a framework operating in
representation, description, classifier learning and classification phases. The representation
phase represents the images of graphic entities by attributed graphs. The description
phase employs FMGE based graph embedding for encoding the graphs into numeric feature
vectors. The classifier learning and classification phases employ Bayesian network classifier
to achieve graphics recognition.

Several initial prototypes of FMGE have been used for graphic symbol recognition.
These works have been published in [Luqman et al., 2009b], [Luqman et al., 2009a],
[Luqman et al., 2010c], [Luqman et al., 2010d] and [Brouard et al., 2010].

Graphics recognition deals with graphic entities in document images and is a subfield of
document image analysis. These graphic entities could correspond to symbols, mathemat-
ical formulas, musical scores, silhouettes, logos etc., depending on the application domain.
[Llados and Sanchez, 2003] has very correctly pointed out that the documents from elec-
tronics, engineering, music, architecture and various other fields use domain-dependent
graphic notations which are based on particular alphabets of symbols. These industries
have a rich heritage of hand-drawn documents and because of high demands of appli-
cation domains, overtime symbol recognition is becoming core goal of automatic image
analysis and understanding systems. Hand-drawn based user interfaces, backward conver-
sion from raster images to CAD, content based retrieval from graphic document databases
and browsing of graphic documents are some of the typical applications of symbol recogni-
tion. Detailed discussion on the application domains of symbol recognition has been pro-
vided by research surveys [Chhabra, 1998, Lladós et al., 2002, Cordella and Vento, 2000,
Tombre et al., 2006].

135

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6.1 Representation phase

This important and basic phase concerns the representation of images of graphic sym-
bols by an Attributed Relational Graph (ARG), as proposed by [Qureshi et al., 2007], and
is summarized in Figure 5.5.

The topological and geometric details about structure of symbol are extracted and are
represented by an ARG. In first step, the symbol is vectorized and is represented by a
set of primitives. These are given by labels 1, 2, 3, 4 in the vectorization part of Figure
5.5). In next step, the graph is constructed by using the aforementioned primitives as the
nodes and the topological relations between them as the edges. Nodes are assigned the
‘relative length’ (normalized between 0 and 1) and ‘primitive-type’ (Vector for filled regions
of shape and Quadrilateral for thin regions) as attributes; whereas edges of the graph have
‘connection-type’ (L, X, T, P, S) and ‘relative angle’ (normalized between 0 and 90) as
attributes.

Figure 5.5: Representing a graphic symbol image by an attributed graph.

136

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6.2 Description phase (FMGE)

This phase concerns the description of attributed graph representations of graphic
symbols by feature vectors. The is achieved through Fuzzy Multilevel Graph Embedding
(FMGE). FMGE extracts the graph level details, subgraph homogeneity details and ele-
mentary level details from graph representations of symbols in learning set and adapts its
parameters to underlying graphs, during the o↵-line unsupervised learning phase. It em-
beds the attributed graph representations of the symbols into Fuzzy Structural Multilevel
Feature Vectors (FSMFV), during the on-line graph embedding phase. The use of fuzzy
logic enables FMGE to increase the robustness of the graph embedding and provides resis-
tance against the irregularities and uncertainties introduced in shape of symbol as result
of degradations and deformations.

The features in the signature for attributed graphs of graphic symbols are adapted to
the underlying graph representation and are given in Figure 5.6. As show in the Figure 5.6,
three intervals are used for encoding numeric information in graphs i.e. for density of con-
nections at nodes (node degree), distribution of relative length of primitives (the relative
length attribute of nodes) and distribution of relative angle of connections (the relative
angle attribute of edges). We have not used the resemblance attributes for embedding
these graphs.

Figure 5.6: FMGE embedding of an attributed graph of a graphic symbol.

137

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6.3 Classifier learning phase

We have used a Bayesian network classifier for modeling the joint probability distri-
bution of the FSMFVs of the attributed graph representations of the graphic symbols
in learning set. Our choice of using a Bayesian network classifier is primarily motivated
by the fact that the probabilistic reasoning of Bayesian networks enables the framework
to handle the uncertainties in the feature vector embedding of the attributed graphs (of
symbols). As lots of information is lost while mapping from high dimensional continuous
graph space to discrete feature vector space.

The feature vectors are first discretized [Leray and Francois, 2004]. We discretize each
feature of the feature vector separately and independently of others. The class labels are
chosen intelligently in order to avoid the need of any discretization for them.

The Bayesian network is learned in two steps.

First we learn the structure of the network by genetic algorithms proposed by Delaplace
et al. [Delaplace et al., 2006]. These are evolutionary algorithms, but in our case they have
provided stable results (for a given dataset multiple invocations always returned identical
network structures). Each feature in feature vector becomes a node of network. The goal of
structure learning stage is to find the best network structure from underlying data which
contains all possible dependency relationships between all feature pairs. The structure
of the learned network depicts the dependency relationships between di↵erent features in
signature.

The second step is learning of parameters of network; which are conditional probability
distributions Pr(node

i

|parents
i

) associated to nodes of the network and which quantify
the dependency relationships between nodes. The network parameters are obtained by
maximum likelihood estimation (MLE); which is a robust parameter estimation technique
and assigns the most likely parameter values to best describe a given distribution of data.
We avoid null probabilities by using Dirichlet priors with MLE. The learned Bayesian
network encodes joint probability distribution of the symbol signatures.

5.6.4 Classification phase (graphic symbol recognition)

For recognizing a query symbol we use Bayesian probabilistic inference on the encoded
joint probability distribution. This is achieved by using junction tree inference engine
which is the most popular exact inference engine for Bayesian probabilistic inference and is
implemented in [Leray and Francois, 2004]. The inference engine propagates the evidence
(feature vector of query symbol) in network and computes posterior probability for each
symbol class. Equation 5.1 gives Bayes rule for the system. It states that posterior
probability or probability of a symbol class c

i

given a query signature ‘evidence e’ is

138

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

computed from likelihood (probability of e given c
i

), prior probability of c
i

and marginal
likelihood (prior probability of e). The marginal likelihood is to normalize the posterior
probability; it ensures that the probabilities fall between 0 and 1.

Pr(c
i

|e) = Pr(e, c
i

)

Pr(e)
=

Pr(e|c
i

)⇥ Pr(c
i

)

Pr(e)
(5.1)

where,
e = f1, f2, f3, ..., f16 and

Pr(e) =
P

k

i=1

Pr(e, c
i

) =
P

k

i=1

Pr(e|c
i

)⇥ Pr(c
i

)

The posterior probabilities are computed for all ‘k’ symbol classes in learning set and
the query symbol is then assigned to class which maximizes the posterior probability i.e.
which has highest posterior probability for the given query symbol.

139

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6.5 Symbols with vectorial and binary noise

We have performed this set of symbol recognition experimentations on synthetically
generated 2D symbols of models collected from database of GREC2005
[Dosch and Valveny, 2006]. In order to get a true picture of the scalability performance
of the system on this database, we have experimented with 20, 50, 75, 100, 125 & 150
symbol classes. The learning and test sets are generated based on the deformations and
degradations of GREC2005. For each class the perfect symbol i.e. the model, along with
its 36 rotated and 12 scaled examples was used for learning as generally Bayesian network
learning algorithms perform better on datasets with large number of examples. The system
has been tested for its scalability on clean symbols (rotated and scaled), various levels of
vectorial deformations and for binary degradations of GREC symbol recognition contest
(Figure 5.7 and Figure 5.8). Each test dataset is composed of 10 query symbols for each
class.

Model Level-1 Level-2 Level-3

Figure 5.7: Model symbol with deformations, used for simulating hand-drawn symbols.

Model GREC’05 Degrade-1

Figure 5.8: Model symbol with degraded example, used to simulate photocopying / print-
ing / scanning.

140

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

Table 5.7: Results of symbol recognition experiments for vectorial and binary noise.
Number of classes (models) 20 50 75 100 125 150

Clean symbols (rotated & scaled) 100% 100% 100% 100% 100% 99%

Hand-drawn deformation
Level-1 99% 96% 93% 92% 90% 89%
Level-2 98% 95% 92% 90% 89% 87%
Level-3 95% 77% 73% 70% 69% 67%

Binary degrade 98% 96% 93% 92% 89% 89%

Table 5.7 summarizes the experimental results. A 100% recognition rate for clean sym-
bols illustrates the invariance of our method to rotation and scaling. Our system outper-
forms all GREC participants (available results from GREC2003 [Valveny and Dosch, 2004]
and GREC2005 [Dosch and Valveny, 2006] competetions) in scalability tests and is com-
parable to contest participants for low levels of deformation and degradations. The recog-
nition rates decrease with level of deformation and drop drastically for high binary degra-
dations. This is an expected behaviour and is a result of the irregularities produced in
symbol signature; which is a direct outcome of the noise sensitivity of vectorization step,
as also pointed out by [Lladós et al., 2002]. We used only clean symbols for learning and
(thus) the recognition rates truely illustrate the robustness of our system against vectorial
and binary noise.

141

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6.6 Symbols with contextual noise

This set of experimentations was performed on a synthetically generated corpus, of
symbols cropped from complete documents [Delalandre et al., 2010]. These experiments
focus on evaluating the robustness of the proposed system against context noise i.e. the
structural noise introduced in symbols when they are cropped from documents. This type
of noise gets very important when we are dealing with symbols in context in complete
documents. We have performed these experiments on two subsets of symbols: consisting
of 16 models from floor plans and 21 models from electronic diagrams. The models are
derived from GREC2005 database [Dosch and Valveny, 2006] and are given in Figure 5.10
and Figure 5.11. For each class the perfect symbol (model), along with its 36 rotated and
12 scaled examples was used for learning. The examples of models, for learning and test
sets were generated synthetically [Delalandre et al., 2010]. The test set contains symbols
with di↵erent levels of context-noise (Figure 5.9) in order to simulate the cropping of
symbols from documents. Test symbols were randomly rotated and scaled and multiple
query symbols were included for each class.

Figure 5.9: An arm chair with 2 examples of each di↵erent level of contextual noise.

142

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

Figure 5.10: Model symbols from electronic drawings.

143

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

Figure 5.11: Model symbols from floor plans.

144

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

Table 5.8 summarizes the results of experiments for context noise. We have not used
any sophisticated de-noising or pretreatment and our method derives its ability to resist
against context noise, directly from underlying vectorization technique, the fuzzy approach
used for computing structural signature and the capabilities of Bayesian networks to cope
with uncertainties. The models for electronic diagrams contain symbols consisting of
complex arrangement of lines and arcs, which a↵ects the features in structural signature
as the employed vectorization technique is not able to cope with arcs and circles; as is
depicted by the recognition rates for these symbols. But keeping in view the fact that we
have used only clean symbols for learning and noisy symbols for testing, we believe that
the results show the ability of our signature to exploit the su�cient structural details of
symbols and it could be used to discriminate and recognize symbols with context noise.

Table 5.8: Results of symbol recognition experiments for context noise.

Noise
Model
symbol
(classes)

Query
symbol
(each
class)

Recognition

rate (match

with

topmost

result)

Recognition

rate (a

match in

top-3

results)

Floor plans
Level-1 16 100 84% 95 %
Level-2 16 100 79% 90 %
Level-3 16 100 76% 87 %

Average recognition rate 80% 91%

Electronic diagrams
Level-1 21 100 69% 89%
Level-2 21 100 66% 88%
Level-3 21 100 61% 85%

Average recognition rate 65% 87%

145

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

Structural methods are the strongest methods for graphics representation and sta-
tistical classifiers provide e�cient recognition techniques. By designing a mechanism to
convert a structural representation to feature vector, the whole range of statistical tools
(classifiers) are opened for that structural representation.

The application of FMGE to graphic symbol recognition does not use any sophisti-
cated de-noising or pretreatment and it drives its power to resist against deformations and
degradations, directly from representation, description, learning and classification phases.
FMGE addresses the issue of sensitivity of structural representations to noise and defor-
mations by introducing fuzzy overlapping trapezoidal intervals for computing structural
signature.

Promising experimental results confirm that the proposed methodology of combining
structural representation and statistical classifier is useful for graphics recognition.

146

5.6. APPLICATION OF FMGE TO GRAPHICS RECOGNITION

5.6.7 Complexity of FMGE

The graph embedding phase of one attributed graph by FMGE requires only a fraction
of a second and can be performed in real-time on standard PC.

The unsupervised learning phase of FMGE can be computational intensive depending
on the size of dataset and the graphs. However, this phase is performed o↵-line and
has linear time complexity. This is illustrated by Figure 5.12, which presents the time
requirements of the unsupervised learning phase of FMGE for synthetically generated
graphs from IAM GREC dataset. All parameters except the number of attributes are
kept constant.

Figure 5.12: Time complexity of unsupervised learning phase of FMGE.

147

5.7. CONCLUSION

5.7 Conclusion

In this chapter we have presented the experimental evaluations of FMGE for the prob-
lems of graph clustering and graph classification. We have also presented the experimental
evaluation of the frame work for automatic indexing of graph repositories for graph retrieval
and subgraph spotting. Along with the experimental evaluations we have presented the
application of FMGE to the real problems of recognition, indexing and retrieval of graphic
document image repositories.

The experimental evaluations have confirmed that FMGE and the subsequent classi-
fication and clustering in real vector spaces is applicable to di↵erent graph classification
and graph clustering problems. The NP-complete operations in graph space can be solved
in polynomial time (P) in FMGE feature vector space. Also, In certain cases FMGE out-
performs the classical techniques for graph classification and graph clustering, in terms of
recognition rate and quality of clustering respectively.

However, a limitation of FMGE is that it is dependent on the attributes of the graph
nodes and edges, for extracting discriminatory information. The features for the structural
information, also, use the node and edge attributes for extracting subgraph homogeneity.
The direct consequence of the dependence on the node and edge attributes in graph, is
that the performance of FMGE is a↵ected if the graphs do not have many attributes on
nodes and edges.

On the other side, less dependent on the topology of the graph is useful in case of
noisy data. Generally, the noise in underlying data has a direct impact on the topology
of the graph. Less dependence on the topology helps FMGE in robustness against the
deformations in graph.

The framework for automatic indexing of graph repositories proposes a very general
solution, applicable to a wide range of domains where the use of graphs is mandatory.
Experimental results for the two repositories of electronic diagrams and architecture floor
plans are very encouraging.

The application of FMGE to graphics recognition, demonstrates that the graph based
structural representations for graphic document images could be adapted modern compu-
tational tools.

148

Chapter 6

Discussion and Conclusions

In this chapter we present a discussion on the presented work. We highlight the possi-
ble improvements which should be further studied for improving the proposed method of
explicit graph embedding. We conclude this dissertation and point out some important
possible lines of future research.

6.1 Discussion about FMGE

6.1.1 Parameters

The Fuzzy Multilevel Graph Embedding (FMGE) method presented in this thesis has
proposed a framework for extracting three levels of details from the attributed graphs by
performing multilevel analysis of graphs. The three levels of details include graph level
details, structural level details and the elementary level details. It can process graphs with
symbolic as well as numeric attributes on both nodes and edges. The size of the graphs is
not an issue, FMGE can embed small as well as big graphs.

The framework permits the embedding of these details of graphs into numeric feature
vectors, by employing fuzzy histograms for numeric part of the information and crisp
histogram for symbolic part of the information. The framework employs fuzzy overlapping
trapezoidal intervals for smooth transition between the intervals for constructing the fuzzy

149

6.1. DISCUSSION ABOUT FMGE

histogram, in order to minimize the information loss while mapping from continuous graph
space to discrete feature vector space.

The size of the resulting feature vectors is mainly based on the histograms (of frequen-
cies) for encoding the information extracted by multilevel analysis of graphs.

The presented framework is quite modular in nature. The possible customizations of
its various modules are discussed below:

6.1.1.1 Discretization technique

For embedding numeric attributes, we have outlined to use two basic discretization
techniques i.e. equally spaced discretization and AIC based equal frequency discretiza-
tion. However FMGE is fully capable of employing sophisticated state-of-the-art dis-
cretization methods. A survey of popular discretization techniques is presented by Liu et
al. [Liu et al., 2002].

6.1.1.2 Fuzzy membership function

Our proposed framework employs trapezoidal membership function from fuzzy logic
but FMGE is fully capable of utilizing any of the available membership functions. Other
popular choices for fuzzy membership function include triangular and Gaussian arrange-
ments [Ishibuchi and Yamamoto, 2003]. In light of domain knowledge, appropriate choices
could be made for discretization technique and fuzzy membership function.

6.1.1.3 Number of fuzzy intervals for numeric attributes

An important parameter of FMGE’s unsupervised learning phase is the number of fuzzy
intervals to be associated to each attribute. The unsupervised learning phase of FMGE
learns s

i

fuzzy intervals for attribute i in input collection of graphs. The attribute i refers
to structural and elementary level numeric information in input graphs (i.e. node degree,
numeric node attributes and numeric edge attributes in input graphs). The parameter
s
i

for attribute i is independent of other attributes. It is also important to highlight
here that this parameter is not necessarily same for all attributes. This parameter can
be learned and tested on a validation dataset; if one is available. This is demonstrated
by our experimentation on graph classification. If no validation dataset is available the
number of fuzzy intervals s

i

has to be specified manually. A third possibility is that if
the training set can be considered to be a true representative of the test set, an equal
frequency discretization technique could be used for automatically finding the appropriate
number of fuzzy intervals. This is demonstrated by our graph clustering experimentation.

150

6.1. DISCUSSION ABOUT FMGE

As a general rule of thumb, using 3 fuzzy intervals (i.e. small, medium and large) for the
attributes is a safe choice. However, a more intelligent choice could be made in the light
of domain knowledge.

6.1.1.4 Resemblance attributes

For embedding edge attributes resemblance for nodes (structural level information),
we have outlined the use of a measure of central tendency i.e. mean and the spread of
the attribute’s resemblance i.e. the standard deviation on the attribute resemblance of all
couple of edges for a node.

6.1.1.5 Classifier

We have used a simple non-parametric classifier for graph classification experimentation
and a basic clustering technique for graph clustering experimentation, for demonstration
purposes. However, all sophisticated classifiers and clustering methods are fully applicable
to the resulting feature vectors of FMGE.

We have illustrated the application of FMGE in di↵erent domains but have mainly
focused on the graphic document images, because the graphic document images need to
generate sophisticated graph representations.

Another important contribution of this work is the proposed method to spot subgraphs
in huge repositories of attributed graphs. This is achieved by automatically constructing
the index of a graph repository by employing FMGE together with clustering and classi-
fication tools on the cliques of order 2 in the graphs in the repository.

151

6.1. DISCUSSION ABOUT FMGE

6.1.2 Complexity

The unsupervised learning phase of FMGE can be computational expensive, depending
on the size of the graphs and that of the graph dataset. This is dependent on the number
of attributes of nodes and edges in the graph. However, the complexity of this phase is
linear to the number of attributes in graph.

The graph embedding phase of FMGE is fast. It is performed in less that a fraction
of a second on a standard PC.

152

6.2. CONCLUSIONS

6.2 Conclusions

We have presented a method of explicit graph embedding and a framework for auto-
matic indexing of graph repositories, with an aim to bridge the gap between structural
and statistical approaches of pattern recognition. Our work proposes a straightforward,
simple and computational e�cient solution for facilitating the use of graph based power-
ful representations together with learning and computational strengths of state-of-the-art
machine learning, classification and clustering.

The proposed graph embedding method exploits multilevel analysis of graph for em-
bedding it into a feature vector. The feature vector contains graph level features (graph
order and graph size), along-with structural level features (node degree, node attributes
resemblance for edges and edge attributes resemblance for nodes) and elementary level fea-
tures (node attributes and edge attributes). We have minimized the information loss, while
mapping from continuous graph space to discrete vector space, by employing fuzzy over-
lapping trapezoidal intervals. These intervals are learned during an unsupervised learning
phase. The intervals are employed during graph embedding phase for constructing fuzzy
interval encoded histograms for structural and elementary level features. This achieves an
eventual embedding of a graph into a feature vector.

The experimental results are encouraging and demonstrates the applicability of our
method to graph clustering and classification problems. The method could be deployed
in an unsupervised fashion for graph clustering problem even if no separate learning set is
available as it has built-in capability to implicitly learn from the input collection of graphs.
Its unsupervised learning capabilities also allows it to generalize to unseen graphs i.e. to
be deployed in a supervised fashion where it learns on a graph dataset and embeds unseen
graphs. The proposed method is applicable to a wide range of domains for solving the
problems of graph clustering and graph classification.

However, our method is too much dependent on the attributes of graph for extracting
discriminant information from graph and it lacks information on the topology of graph.

The framework for automatic indexing of attributed graph repositories employs ex-
plicit graph embedding and gives a very general solution for graph retrieval and subgraph
spotting. The automatic indexing of attributed graph repositories doest not require a
labeled training set and thus has the capability of less expensive and fast deployment to
various domains where the use of a relational data structure is mandatory.

153

6.2. CONCLUSIONS

We have obtained promising experimental results, which clearly demonstrate that
Fuzzy Multilevel Graph Embedding (FMGE) enables the structural representations to
benefit from the computational e�cient statistical models and tools, for the problems of
graph classification, graph clustering, graph retrieval and subgraph spotting.

154

6.3. FUTURE CHALLENGES

6.3 Future challenges

The current research findings are encouraging and one of the future lines of work is to
take this work forward for improving the quality of embedding achieved by FMGE.

An important direction of future research in this regard is to study the feature vec-
tor of FMGE in further details. We have reported some very preliminary results in
[Luqman et al., 2011a]. The application of dimensionality reduction, using principal com-
ponent analysis (PCA), independent component analysis (ICA) and their kernel ver-
sions, will be very interesting. An interesting reference to proceed in this direction is
[Bunke and Riesen, 2011b].

Linked to the dimensionality reduction of feature vector of FMGE, an interesting
direction of future research is to use feature selection methods for selecting meaning-
ful features and reducing the size of the feature vector. A reference in direction is
[Bunke and Riesen, 2011a].

For extracting more topological information from graphs and to include it in the
FMGE, graph paths and Morgan index [Morgan, 1965] are interesting pointers for future
research.

The scenarios where learning set is available and FMGE adapts its parameter to the
graphs in the learning set, the detection of outliers for cleaning the learning set is impor-
tant. This is another important challenge for future research.

To take the subgraph spotting work forward, future research work can improve the
quality of indexing of the graph repository by exploring cliques of higher order (� 3) and
to build a multi-resolution index of a graph repository. This will index the graphs on
the basis of substructures of di↵erent sizes, which will improve the quality of subgraph
spotting by removing false positives as we move down to the resolution defined by lower
order cliques.

A very interesting future lines of research, for addressing the current main limitation
of graph embedding methods in general, is to try to get the surjective matching of the
nodes of two attributed graphs that have been compared in feature vector space. This has
been illustrated for two example graphs in Figure 6.1.

155

6.3. FUTURE CHALLENGES

Figure 6.1: Bijective match of nodes of two graphs.

156

Appendix

157

Appendix A

Graph databases

A.1 IAM graph database repository

Six datasets from IAM graph database repository, proposed by [Riesen and Bunke, 2010c],
have been employed for our experimentation. These graph datasets are publicly available1.
The IAM graph database repository contains graphs from the field of document image anal-
ysis and graphics recognition. The datasets in IAM graph database repository are detailed
in subsequent subsections. The example images are reproduced from [Riesen, 2010].

A.1.1 Letter graphs

The letter graph dataset is comprised of graphs extracted from drawings of 15 capital
letters of Roman alphabet that consists of straight lines only viz. A, E, F, H, I, K, L, M, N,
T, V, W, X, Y and Z. For each class, a prototype line drawing is manually constructed. An
illustration of the prototype line drawings is given in Figure A.1. These prototype drawings
are then converted into prototype graphs by representing lines by undirected edges and
ending points of lines by nodes. Each node is labeled with a two-dimensional attribute
giving its position relative to a reference coordinate system. Edges are unlabeled. In
order to test classifiers under di↵erent conditions, distortions are applied on the prototype
graphs with three di↵erent levels of strength. This results in three di↵erent versions of
this database, including graphs with a low, medium and high level of distortion. These
three graph dataset consist of a training set, a validation set, and a test set of size 750
each. The graphs are uniformly distributed over the 15 classes [Bunke and Riesen, 2011b].
Figure A.2, A.3 and A.4 illustrate ten graph instances for each distortion level representing
the letter A. Note that letters that undergo distortions of medium and high strength are

1
http://www.greyc.ensicaen.fr/iapr-tc15/links.html

159

http://www.greyc.ensicaen.fr/iapr-tc15/links.html

A.1. IAM GRAPH DATABASE REPOSITORY

di�cult to be recognized, even for a human observer [Riesen, 2010].

Figure A.1: Prototypes of letters A to Z.

Figure A.2: Instances of letter A at distortion level low.

Figure A.3: Instances of letter A at distortion level medium.

Figure A.4: Instances of letter A at distortion level high.

160

A.1. IAM GRAPH DATABASE REPOSITORY

A.1.2 GREC graphs

Automatic conversion of line drawings from paper to electronic form requires the
recognition of geometric primitives like lines, arcs, circles etc. in scanned documents
[Riesen, 2010]. The GREC graph dataset is comprised of graphs representing 22 symbols
from architectural and electronic drawings. The prototype images of each class are pre-
sented in Figure A.5. The images occur at five di↵erent distortion levels (Figure A.6).
Depending on the distortion level, either erosion, dilation, or other morphological opera-
tions are applied. The result is thinned to obtain lines of one pixel width. Finally, graphs
are extracted from the resulting denoised images by tracing the lines from end to end
and detecting intersections as well as corners. Ending points, corners, intersections and
circles are represented by nodes and labeled with a two-dimensional attribute giving their
position. The nodes are connected by undirected edges which are labeled as line or arc.
An additional attribute specifies the angle with respect to the horizontal direction or the
diameter in case of arcs. For an adequately sized set, the five graphs per distortion level
are individually distorted 30 times to obtain a data set containing 3300 graphs uniformly
distributed over the 22 classes. These distortions consists of translations and scalings of
the graphs in a certain range, and random deletions and insertions of both nodes and
edges. The resulting set is split into a training and a validation set of size 836 each, and
a test set of size 1628 [Bunke and Riesen, 2011b].

161

A.1. IAM GRAPH DATABASE REPOSITORY

Figure A.5: The prototype images of the 22 GREC classes.

Figure A.6: The five distortion levels (bottom to top) applied to three sample images.

162

A.1. IAM GRAPH DATABASE REPOSITORY

A.1.3 Fingerprint graphs

The Fingerprint data set stems from the emerging field of biometric person authen-
tication. Biometric person authentication refers to the task of automatically recognizing
the identity of a person from his or her physiological or behavioral characteristics. Fin-
gerprint images are particularly interesting as a biometric measurement since each person
possess this biometric, persons are believed to have unique fingerprints, and fingerprints
do not change over time. Moreover, fingerprint images are rather easy to be captured by
sensors [Riesen, 2010]. Fingerprints are converted into graphs by filtering the images and
extracting regions that are relevant. In order to obtain graphs from fingerprint images,
the relevant regions are binarized and a noise removal and thinning procedure is applied.
This results in a skeletonized representation of the extracted regions. Ending points and
bifurcation points of the skeletonized regions are represented by nodes. Additional nodes
are inserted in regular intervals between ending points and bifurcation points. Finally,
undirected edges are inserted to link nodes that are directly connected through a ridge in
the skeleton. Each node is labeled with a two-dimensional attribute giving its position.
The edges are attributed with an angle denoting the orientation of the edge with respect to
the horizontal direction. The fingerprint dataset consists of a training set of size 500, a val-
idation set of size 300, and a test set of size 2000. Thus, there are 2800 fingerprint images
totally; out of the four classes arch, left, right, and whorl from the Galton-Henry classifi-
cation system [Riesen and Bunke, 2010c]. The example fingerprint images for these four
classes are presented in Figure A.7, Figure A.8, Figure A.9 and Figure A.10 respectively.

A.1.4 Mutagenicity graphs

Mutagenicity is the ability of a chemical compound to cause mutations in DNA and is
therefore one of the numerous adverse properties of a compound that hampers its potential
to become a marketable drug. Mutagenic compounds pose a toxic risk to humans and
screening of drug candidates for mutagenicity is a regulatory requirement for drug approval
[Riesen, 2010]. The molecules are converted into attributed graphs in a straightforward
manner by representing atoms as nodes and the covalent bonds as edges. Nodes are labeled
with the number of the corresponding chemical symbol and edges by the valence of the
linkage. The mutagenicity data set is divided into two classes mutagen and nonmutagen.
We use a training set of size 1500, a validation set of size 500, and a test set of size 2337.
Thus, there are 4337 elements totally (2401 mutagen elements and 1936 nonmutagen
elements) [Riesen and Bunke, 2010c].

163

A.1. IAM GRAPH DATABASE REPOSITORY

Figure A.7: Fingerprint examples from the Galton-Henry class Arch.

Figure A.8: Fingerprint examples from the Galton-Henry class Left loop.

Figure A.9: Fingerprint examples from the Galton-Henry class Right loop.

Figure A.10: Fingerprint examples from the Galton-Henry class Whorl.

164

A.2. GEPR GRAPHS

A.2 GEPR graphs

The GEPR graph database consists of graphs extracted from three large publicly avail-
able image databases viz. the Amsterdam Library of Object Images (ALOI), the Columbia
Object Image Library (COIL) and the Object Databank by Carnegie-Mellon University
(ODBK). The Amsterdam Library of Object Images is a collection of images of 1000 small
objects. Each object has been acquired several times changing the orientation and the
illumination, for a total of 110250 images. Figure A.11 presents some example images.
GEPR graph database is composed of 50 objects from ALOI and 72 views for each object
(i.e. 3600 images). The Columbia Object Image Library is a collection of images of 100
small objects, each acquired from 72 di↵erent orientations. Figure A.12 presents some ex-
ample images from COIL. GEPR graph database contains 50 objects with 72 views each,
from COIL (i.e. 3600 images). The Object Data Bank has been obtained from a collection
of 209 3D object models, that have been rendered with photo-realistic quality using 14
di↵erent view points. Figure A.13 presents some examples of the pictures from ODBK.
The GEPR graph database contains 208 objects and 12 of the 14 view points for each,
from ODBK (i.e. 2496 images). The images of each database have been divided into a
first set that has been distributed in order to tune the algorithms, and a second set for
the performance evaluation [Foggia and Vento, 2010].

Each image has been smoothed using a Gaussian filter, and then it has been seg-
mented using a Pyramidal segmentation algorithm. Finally, from the segmentation the
Region Adjacency Graph (RAG) has been constructed as the image graph-based represen-
tation. The nodes of the graph have as attributes the relative size and the average color
components of the corresponding regions, while the edges of the graph have no attributes
[Foggia and Vento, 2010]. The example images of ALOI, COIL and ODBK are reproduced
from [Foggia and Vento, 2010].

165

A.2. GEPR GRAPHS

Figure A.11: Some examples of the images in the ALOI database.

Figure A.12: Some examples of the images in the COIL database.

Figure A.13: Some examples of the images in the ODBK database.

166

Appendix B

Graphs representation of graphic
document images

A new graph repository is constructed by extracting graphs from images of architectural
floor plans and electronic diagrams in SESYD image dataset [Delalandre et al., 2010], for
experimentation of the framework for automatic indexing of graph repositories for graph
retrieval and subgraph spotting. The corresponding graph repository is made publicly
available1 for academia and scientific community for research purposes.

The SESYD graph database consists of graph extracted from line drawing document
images in SESYD dataset [Delalandre et al., 2010]. The SESYD dataset contains 100
synthetically generated line drawing document images of architectural floor plans and
electronic diagrams each, for 10 di↵erent levels of degradations. The architectural floor
plans and the electronic diagrams are composed of 16 and 21 unique symbol models respec-
tively. For architectural floor plans a total of 200 document images were selected. These
document images are comprised of 4216 symbols which come from 16 di↵erent classes of
symbols. An example architectural floor plan is presented in Figure B.2. On the other
hand, 800 electronic diagram images were selected for constructing our graph dataset. The
electronic diagrams are comprised of a total of 9600 symbols which belong to 21 di↵erent
classes. Figure B.3 presents an example electronic diagram image. The query images
simulate the contextual noise. This type of noise occurs in cropped regions of graphic
document images. An interesting application of the latter is selecting a region in a graphic
document image (on a modern tactile interface), for querying a graphic document content
based image retrieval (CBIR) system. The query images are synthetically generated with
three di↵erent levels of noise; simulating di↵erent levels of contextual noise. Figure B.4
presents example query images.

The document images in SESYD dataset were represented by attributed graphs by

1
http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip

167

http://www.rfai.li.univ-tours.fr/PagesPerso/mmluqman/public/SESYD_graphs.zip

GRAPHS FROM GRAPHIC DOCUMENT IMAGES (FOR SUBGRAPH SPOTTING)

using the work of Qureshi et al. [Qureshi et al., 2007]. The graph extraction phase is
illustrated in Figure B.1 for a part of graphic document image. The topological and
geometric details about structure of graphic content are extracted and are represented by
an attributed relational graph (ARG). In first step, the graphic content is vectorized and
is represented by a set of primitives (labels 1, 2, 3, 4 in Figure B.1). In next step, these
primitives become nodes and topological relations between them become arcs in ARG.
Nodes have relative length (normalized between 0 and 1) and primitive-type (Vector for
filled regions of shape and Quadrilateral for thin regions) as attributes; whereas arcs of
the graph have connection-type (L, X, T, P, S) and relative angle (normalized between 0�

and 90�) as attributes.

Figure B.1: Representing graphic content by an attributed graph.

168

GRAPHS FROM GRAPHIC DOCUMENT IMAGES (FOR SUBGRAPH SPOTTING)

Figure B.2: An example architectural floor plan image from SESYD dataset.

169

GRAPHS FROM GRAPHIC DOCUMENT IMAGES (FOR SUBGRAPH SPOTTING)

Figure B.3: An example electronic diagram image from SESYD dataset.

Figure B.4: An arm chair with 2 examples of each di↵erent level of contextual noise.

170

Bibliography

[A. and Zadeh, 2008] A., L. and Zadeh (2008). Is there a need for fuzzy logic? Information
Sciences, 178(13):2751–2779.

[Borges, 1996] Borges, P. S. d. S. (1996). A model of strategy games based on the paradigm
of the Iterated Prisoner’s Dilemma employing Fuzzy Sets. PhD thesis, Universidade
Federal de Santa Catarina.

[Brouard et al., 2010] Brouard, T., Delaplace, A., Luqman, M. M., Cardot, H., and
Ramel, J.-Y. (2010). Design of evolutionary methods applied to the learning of Bayesian
network structures. In Bayesian Network, pages 13–38.

[Brunner and Brunnett, 2004] Brunner, D. and Brunnett, G. (2004). Mesh Segmentation
Using the Object Skeleton Graph. In International Conference on Computer Graphics
and Imaging, pages 48–55.

[Bunke, 1997] Bunke, H. (1997). On a relation between graph edit distance and maximum
common subgraph. Pattern Recognition Letters.

[Bunke, 1999] Bunke, H. (1999). Error correcting graph matching : On the influence of
the underlying cost function. IEEE Transactions on Pattern Analysis and Machine
Intelligence.

[Bunke et al., 2002] Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., and M., V. (2002).
A comparison of algorithms for maximum common subgraph on randomly connected
graphs. In International Workshops on Structural, Syntactic, and Statistical Pattern
Recognition.

[Bunke et al., 2001] Bunke, H., Gunter, S., and Jiang, X. (2001). Towards bridging the
gap between statistical and structural pattern recognition: Two new concepts in graph
matching. In International Conference on Advances in Pattern Recognition, pages 1–11.
Springer.

[Bunke et al., 2005] Bunke, H., Irniger, C., and Neuhaus, M. (2005). Graph Matching -
Challenges and Potential Solutions. In International Conference on Image Analysis and
Processing, pages 1–10.

171

BIBLIOGRAPHY

[Bunke and Riesen, 2011a] Bunke, H. and Riesen, K. (2011a). Improving vector space
embedding of graphs through feature selection algorithms. Pattern Recognition,
44(9):1928–1940.

[Bunke and Riesen, 2011b] Bunke, H. and Riesen, K. (2011b). Recent advances in graph-
based pattern recognition with applications in document analysis. Pattern Recognition,
44(5):1057–1067.

[Bunke and Shearer, 1998] Bunke, H. and Shearer, K. (1998). A graph distance metric
based on the maximal common subgraph. Pattern Recognition Letters.

[Byun, 2003] Byun, H. (2003). A survey on pattern recognition applications of support
vector machines. International Journal of Pattern Recognition and Artificial Intelli-
gence, 17(3):459–486.

[Caelli and Kosinov, 2004] Caelli, T. and Kosinov, S. (2004). Inexact graph matching
using eigen-subspace projection clustering. International Journal of Pattern Recognition
and Artificial Intelligence.

[Carcassoni and Hancock, 2001] Carcassoni, M. and Hancock, E. R. (2001). Weighted
graph-matching using modal clusters. In 9th International Conference on Computer
Analysis of Images and Patterns.

[Chen et al., 2007] Chen, T., Yang, Q., and Tang, X. (2007). Directed graph embedding.
In International Joint Conference on Artificial Intelligence, pages 2707–2712.

[Chhabra, 1998] Chhabra, A. (1998). Graphic symbol recognition: An overview. Graphics
Recognition Algorithms and Systems, pages 68–79.

[Chung, 1997] Chung, F. R. K. (1997). Spectral Graph Theory. American Mathematical
Society.

[Colot et al., 1994] Colot, O., Courtellemont, P., and El-Matouat, A. (1994). Information
criteria and abrupt changes in probability laws. In Signal Processing VII: Theories and
Applications, pages 1855–1858.

[Conte et al., 2004] Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004). Thirty years
of graph matching in pattern recognition. International Journal of Pattern Recognition
and Artificial Intelligence, 18(3):265–298.

[Cordella and Vento, 2000] Cordella, L. and Vento, M. (2000). Symbol recognition in
documents: a collection of techniques? International Journal on Document Analysis
and Recognition, 3(2):73–88.

[Corneil and Gotlie, 1970] Corneil, D. and Gotlie, C. (1970). An E�cient Algorithm for
Graph Isomorphism. Journal of the Association for Computing Machinery, 17:51–64.

[De Sa, 2001] De Sa, J. (2001). Pattern recognition: concepts, methods, and applications.
Springer Verlag.

172

BIBLIOGRAPHY

[Delalandre et al., 2010] Delalandre, M., Valveny, E., Pridmore, T., and Karatzas, D.
(2010). Generation of synthetic documents for performance evaluation of symbol recog-
nition & spotting systems. International Journal on Document Analysis and Recogni-
tion, pages 1–21.

[Delaplace et al., 2006] Delaplace, A., Brouard, T., and Cardot, H. (2006). Two evolution-
ary methods for learning Bayesian network structures. 2006 International Conference
on Computational Intelligence and Security, pages 137–142.

[Dosch and Valveny, 2006] Dosch, P. and Valveny, E. (2006). Report on the Second Sym-
bol Recognition Contest. In Liu, W. and Lladós, J., editors, Graphics Recognition.
Ten Years Review and Future Perspectives, volume 3926 of Lecture Notes in Computer
Science, pages 381–397. Springer Berlin / Heidelberg.

[Duda et al., 2000] Duda, R., Hart, P., and Stork, D. (2000). Pattern classification, vol-
ume 2. Wiley Interscience.

[Eshera and Fu, 1984] Eshera, M. and Fu, K. (1984). A graph distance measure for image
analysis. IEEE Transactions on Systems, Man, and Cybernetics, 14:394–408.

[Ferrer et al., 2008] Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., and Bunke, H.
(2008). An approximate algorithm for median graph computation using graph embed-
ding. In International Conference on Pattern Recognition, pages 1–4. Ieee.

[Ferrer et al., 2010] Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., and Bunke, H.
(2010). Generalized median graph computation by means of graph embedding in vector
spaces. Pattern Recognition, 43(4):1642–1655.

[Fischler and Elschlager, 1973] Fischler, M. and Elschlager, R. (1973). The representation
and matching of pictorial structures. IEEE Transactions on Computers.

[Foggia and Vento, 2010] Foggia, P. and Vento, M. (2010). Graph Embedding for Pattern
Recognition. In Ünay, D., Çataltepe, Z., and Aksoy, S., editors, Recognizing Patterns in
Signals, Speech, Images and Videos, volume 6388 of Lecture Notes in Computer Science,
pages 75–82. Springer.

[Franco et al., 2003] Franco, P., Ogier, J.-M., Loonis, P., and Mullot, R. (2003). A Topo-
logical Measure for Image Object Recognition. In Lecture Notes in Computer Science,
volume 3088, pages 279–290.

[Friedman and Kandel, 1999] Friedman, M. and Kandel, A. (1999). Introduction to pat-
tern recognition. World Scientific.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W. H. Freeman.

[Gibert et al., 2011a] Gibert, J., Valveny, E., and Bunke, H. (2011a). Dimensionality
Reduction for Graph of Words Embedding. In Graph-Based Representations in Pattern
Recognition, pages 22–31.

173

BIBLIOGRAPHY

[Gibert et al., 2011b] Gibert, J., Valveny, E., and Bunke, H. (2011b). Dimensionality
Reduction for Graph of Words Embedding. In LNCS 6658, pages 22–31.

[Gibert et al., 2011c] Gibert, J., Valveny, E., and Bunke, H. (2011c). Vocabulary Selection
for Graph of Words Embedding. In 5th Iberian Conference on Pattern Recognition and
Image Analysis, pages 216–223. LNCS. Berlin: Springer, 6669 edition.

[Godsil and Royle, 2011] Godsil, C. and Royle, G. (2011). Algebraic Graph Theory.
Springer.

[Gori et al., 2005] Gori, M., Maggini, M., and Sarti, L. (2005). Exact and approximate
graph matching using random walks. IEEE transactions on pattern analysis and ma-
chine intelligence, 27.

[Harchaoui, 2007] Harchaoui, Z. (2007). Image classification with segmentation graph
kernels. In IEEE Conference on Computer Vision and Pattern Recognition.

[Hart et al., 1968] Hart, P., Nilsson, N., and Raphael, B. (1968). A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems, Man
and Cybernetics.

[Inokuchi et al., 2000] Inokuchi, A., Washio, T., and Motoda, H. (2000). An Apriori-
Based Algorithm for Mining Frequent Substructures from Graph Data. Lecture Notes
in Computer Science, 1910:13–23.

[Ishibuchi and Yamamoto, 2003] Ishibuchi, H. and Yamamoto, T. (2003). Deriving fuzzy
discretization from interval discretization. In International Conference on Fuzzy Sys-
tems, pages 749–754. IEEE.

[Jain et al., 1999] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering : a
review. ACM Computing Surveys.

[Jiang and Bunke, 1999] Jiang, X. and Bunke, H. (1999). Optimal Quadratic-Time Iso-
morphism of Ordered Graphs. Pattern Recognition, 32:1273–1283.

[Kaufman and Rousseeuw, 1990] Kaufman, L. and Rousseeuw, P. J. (1990). Finding
Groups in Data: An Introduction to Cluster Analysis, volume 39 of Wiley Series in
Probability and Mathematical Statistics. John Wiley & Sons.

[Klir and Yuan, 1995] Klir, G. and Yuan, B. (1995). Fuzzy sets and fuzzy logic. Prentice-
Hall, Englewood Cli↵s.

[Köbler et al., 1993] Köbler, J., Schöning, U., and Torán, J. (1993). The graph isomor-
phism problem : its structural complexity. Birkhauser Verlag.

[Kosinov and Caelli, 2002] Kosinov, S. and Caelli, T. (2002). Inexact multisubgraph
matching using graph eigenspace and clustering models. In SSPR/SPR, pages 133–
142.

174

BIBLIOGRAPHY

[Kramer and Raedt, 2001] Kramer, S. and Raedt, L. (2001). Feature construction with
version spaces for biochemical application. In 18th International Conference on Machine
Learning, pages 258–265.

[Kuncheva, 2004] Kuncheva, L. (2004). Combining Pattern Classifiers: Methods and Al-
gorithms. John Wiley.

[Lee and Madabhushi, 2010] Lee, G. and Madabhushi, A. (2010). Semi-Supervised Graph
Embedding Scheme with Active Learning (SSGEAL): Classifying High Dimensional
Biomedical Data. In Pattern Recognition in Bioinformatics, volume 6282 of Lecture
Notes in Computer Science, pages 207–218. Springer.

[Leray and Francois, 2004] Leray, P. and Francois, O. (2004). BNT Structure Learning
Package : Documentation and Experiments. Structure, (November).

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady.

[Liu, 2010] Liu, B. (2010). Uncertainty Theory. In Uncertainty Theory, volume 300 of
Studies in Computational Intelligence, pages 1–79. Springer Berlin / Heidelberg.

[Liu et al., 2002] Liu, H., Hussain, F., Tan, C., and Dash, M. (2002). Discretization: An
enabling technique. Data Mining and Knowledge, pages 393–423.

[Llados and Sanchez, 2003] Llados, J. and Sanchez, G. (2003). Symbol recognition using
graphs. In International Conference on Image Processing, volume 2, pages 49–52. IEEE.

[Lladós et al., 2002] Lladós, J., Valveny, E., Sánchez, G., and Mart́ı, E. (2002). Symbol
Recognition: Current Advances and Perspectives. In Graphics Recognition Algorithms
and Applications, volume 2390, pages 104–128.

[Lopresti and Wilfong, 2003] Lopresti, D. and Wilfong, G. (2003). A fast technique for
comparing graph representations with applications to performance evaluation. Interna-
tional Journal of Document Analysis and Recognition.

[Luo et al., 2003] Luo, B., Wilson, R., and Hancock, E. (2003). Spectral embedding of
graphs. Pattern Recognition, 36(10):2213–2230.

[Luqman et al., 2010a] Luqman, M., Lladós, J., Ramel, J.-Y., and Brouard, T. (2010a). A
Fuzzy-Interval Based Approach for Explicit Graph Embedding. In Recognizing Patterns
in Signals, Speech, Images and Videos, volume 6388, pages 93–98.

[Luqman et al., 2009a] Luqman, M. M., Brouard, T., and Ramel, J.-Y. (2009a). Graphic
Symbol Recognition using Graph Based Signature and Bayesian Network Classifier. In
Tenth International Conference on Document Analysis and Recognition (ICDAR), pages
1325–1329, Barcelona. IEEE Computer Society.

[Luqman et al., 2010b] Luqman, M. M., Brouard, T., Ramel, J.-y., and Llados, J. (2010b).
A Content Spotting System For Line Drawing Graphic Document Images. In 20th
International Conference on Pattern Recognition, volume 20, pages 3420–3423.

175

BIBLIOGRAPHY

[Luqman et al., 2010c] Luqman, M. M., Brouard, T., Ramel, J.-Y., and Llados, J. (2010c).
Vers une approche floue d encapsulation de graphes : application à la reconnaissance
de symboles. In Colloque International Francophone sur l’Ecrit et le Document, pages
169–184.

[Luqman et al., 2012] Luqman, M. M., Brouard, T., Ramel, J.-Y., and Llados, J. (2012).
Recherche de sous-graphes par encapsulation floue des cliques dordre 2: Application
à la localisation de contenu dans les images de documents graphiques. In Colloque
International Francophone sur l’Ecrit et le Document, page accepted.

[Luqman et al., 2009b] Luqman, M. M., Delalandre, M., Brouard, T., Ramel, J.-Y., and
Lladós, J. (2009b). Employing fuzzy intervals and loop-based methodology for designing
structural signature : an application to symbol recognition. In GREC, pages 22–31.

[Luqman et al., 2010d] Luqman, M. M., Delalandre, M., Brouard, T., Ramel, J.-Y., and
Lladós, J. (2010d). Fuzzy Intervals for Designing Structural Signature: An Application
to Graphic Symbol Recognition. In Ogier, J.-M., Liu, W., and Lladós, J., editors,
Graphics Recognition. Achievements, Challenges, and Evolution, volume 6020, pages
12–24. Springer Berlin / Heidelberg.

[Luqman et al., 2011a] Luqman, M. M., Lladós, J., Ramel, J.-Y., and Brouard, T. (2011a).
Dimensionality Reduction for Fuzzy-Interval Based Explicit Graph Embedding. In
GREC, pages 117–120.

[Luqman et al., 2011b] Luqman, M. M., Ramel, J.-Y., Llados, J., and Brouard, T.
(2011b). Subgraph Spotting through Explicit Graph Embedding : An Application to
Content Spotting in Graphic Document Images. In Eleventh International Conference
on Document Analysis and Recognition (ICDAR), pages 870–874.

[McGregor, 1982] McGregor, J. J. (1982). Backtrack search algorithms and the maximal
common subgraph problem. Software Practice and Experience.

[Messmer, 1995] Messmer, B. (1995). E�cient Graph Matching Algorithms. PhD thesis,
University of Bern, Switzerland.

[Messmer and Bunke, 1998] Messmer, B. and Bunke, H. (1998). Error-Correcting Graph
Isomorphism using Decision Trees. Int. Journal of Pattern Recognition and Art. Intel-
ligence, 12:721–742.

[Morgan, 1965] Morgan, H. L. (1965). The Generation of a Unique Machine Description for
Chemical Structures - A Technique Developed at Chemical Abstracts Service. Journal
of Chemical Documentation, 5(2):107–113.

[Neuhaus and Bunke, 2004] Neuhaus, M. and Bunke, H. (2004). A probabilistic approach
to learning costs for graph edit distance. In 17th International Conference on Pattern
Recognition.

[Neuhaus and Bunke, 2007] Neuhaus, M. and Bunke, H. (2007). Automatic learning of
cost functions for graph edit distance. Information Sciences.

176

BIBLIOGRAPHY

[Neuhaus, M. et Bunke, 2006] Neuhaus, M. et Bunke, H. (2006). Edit distance-based ker-
nel functions for structural pattern classification. Pattern Recognition.

[Okada et al., 2005] Okada, Y., Sahara, T., Ohgiya, S., and Nagashima, T. (2005). Detec-
tion of cluster boundary in microarray data by reference to mips functional catalogue
database. In International Conference on Genome Informatics, pages 2–3.

[Papadopoulos, A. N. et Manolopoulos, 1999] Papadopoulos, A. N. et Manolopoulos, Y.
(1999). Structure-based similarity search with graph histograms. In International Work-
shop on Database and Expert Systems Applications.

[Pavlidis, 1972] Pavlidis, T. (1972). Representation of Figures by Labeled Graphs. Pattern
Recognition, 4:5–17.

[Pekalska and Duin, 2005] Pekalska, E. and Duin, R. P. W. (2005). The Dissimilarity Rep-
resentation for Pattern Recognition : Foundations And Applications. World Scientific
Publishing.

[Pelillo, 1999] Pelillo, M. (1999). Replicator equations, maximal cliques, and graph iso-
morphism. Neural Computation.

[Qureshi, 2008] Qureshi, R. J. (2008). Reconnaissance de formes et symboles graphiques
complexes dans les images de documents. PhD thesis, Université François-Rabelais de
Tours, France.

[Qureshi et al., 2007] Qureshi, R. J., Ramel, J.-Y., Cardot, H., and Mukherji, P. (2007).
Combination of Symbolic and Statistical Features for Symbols Recognition. In In-
ternational Conference on Signal Processing, Communications and Networking, pages
477–482.

[Radzikowska and Kerre, 2002] Radzikowska, A. M. and Kerre, E. E. (2002). A compar-
ative study of fuzzy rough sets. Fuzzy Sets and Systems, 126(2):137–155.

[Ramel, 1992] Ramel, J.-Y. (1992). Lecture Automatique de Partitions Musicales. PhD
thesis, INSA Lyon, France.

[Read and Corneil, 1977] Read, R. C. and Corneil, D. G. (1977). The graph isomorphism
disease. Journal of Graph Theory.

[Reingold et al., 1997] Reingold, E., Nievergelt, J., and Deo, N. (1997). Combinatorial
algorithms : theory and practice. Prentice-Hall.

[Riesen, 2010] Riesen, K. (2010). Classification and clustering of Vector Space Embedded
Graphs. PhD thesis, University of Bern, Switzerland.

[Riesen and Bunke, 2009] Riesen, K. and Bunke, H. (2009). Graph classification based
on vector space embedding. International Journal of Pattern Recognition and Artificial
Intelligence, 23(6):1053–1081.

[Riesen and Bunke, 2010a] Riesen, K. and Bunke, H. (2010a). Graph Classification and
Clustering Based on Vector Space Embedding. World Scienti c.

177

BIBLIOGRAPHY

[Riesen and Bunke, 2010b] Riesen, K. and Bunke, H. (2010b). Graph Classification And
Clustering Based On Vector Space Embedding. World Scientific Publishing Co., Inc.

[Riesen and Bunke, 2010c] Riesen, K. and Bunke, H. (2010c). IAM graph database reposi-
tory for graph based pattern recognition and machine learning. In Structural, Syntactic,
and Statistical Pattern Recognition, pages 287–297. Springer.

[Riesen et al., 2007] Riesen, K., Neuhaus, M., and Bunke, H. (2007). Graph embedding in
vector spaces by means of prototype selection. In International Conference on Graph-
based Representations in Pattern Recognition, pages 383–393. Springer-Verlag.

[Robles-Kelly and Hancock, 2007] Robles-Kelly, A. and Hancock, E. (2007). A Rieman-
nian approach to graph embedding. Pattern Recognition, 40(3):1042–1056.

[Roth et al., 2003] Roth, V., Laub, J., Kawanabe, M., and Buhmann, J. (2003). Opti-
mal cluster preserving embedding of nonmetric proximity data. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25(12):1540–1551.

[Selkow, 1977] Selkow, S. (1977). The tree-to-tree editing problem. Information Processing
Letters.

[Shaw and Jebara, 2009] Shaw, B. and Jebara, T. (2009). Structure preserving embed-
ding. International Conference on Machine Learning, pages 1–8.

[Shawe-Taylor and Cristianini, 2004] Shawe-Taylor, J. and Cristianini, N. (2004). Kernel
methods for pattern analysis. Cambridge University Press.

[Shokoufandeh et al., 2005] Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., and
Zucker, S. (2005). Indexing hierarchical structures using graph spectra. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 27(7):1125–1140.

[Sidère, 2012] Sidère, N. (2012). Contribution aux méthodes de reconnaissance structurelle
de formes : approche à base de projections de graphes. PhD thesis, Université François-
Rabelais de Tours, France.

[Sidère et al., 2008] Sidère, N., Héroux, P., and Ramel, J.-Y. (2008). A Vectorial Repre-
sentation for the Indexation of Structural Informations, in Structural, Syntactic, and
Statistical Pattern Recognition. In Lecture Notes in Computer Science, 5342, pages
45–54.

[Sidère et al., 2009a] Sidère, N., Héroux, P., and Ramel, J.-Y. (2009a). Embedding labeled
graphs into occurence matrix. In 8th International Workshop on Graphics Recognition,
pages 44–50.

[Sidère et al., 2009b] Sidère, N., Héroux, P., and Ramel, J.-Y. (2009b). Vector Representa-
tion of Graphs: Application to the Classification of Symbols and Letters. International
Conference on Document Analysis and Recognition, pages 681–685.

[Solnon, 2010] Solnon, C. (2010). All di↵erent-based filtering for subgraph isomorphism.
Artificial Intelligence.

178

BIBLIOGRAPHY

[Sonbaty and Ismail, 1998] Sonbaty, Y.-E. and Ismail, M. (1998). A New Algorithm for
Subgraph Optimal Isomorphism. Pattern Recognition, 31(2):205–218.

[Tai, 1979] Tai, K.-C. (1979). The tree-to-tree correction problem. Journal of the Associ-
ation for Computing Machinery.

[Tombre et al., 2006] Tombre, K., Tabbone, S., and Dosch, P. (2006). Musings on symbol
recognition. In Graphics Recognition. Ten Years Review and Future Perspectives, pages
23–34.

[Tsai and Fu, 1979] Tsai, W. and Fu, K. (1979). Error-correcting isomorphisms of at-
tributed relational graphs for pattern analysis. IEEE Transaction on Systems, Man
and Cybernetics.

[Ullman, 1976] Ullman, J. R. (1976). An Algorithm for Subgraph Isomorphism. Journal
of the Association for Computing Machinery, 23(1):31–42.

[Umeyama, 1988] Umeyama, S. (1988). An eigendecomposition approach to weighted
graph matching problems. IEEE Transactions on Pattern Analysis and Machine In-
telligence.

[Valveny and Dosch, 2004] Valveny, E. and Dosch, P. (2004). Symbol recognition contest:
A synthesis. Graphics Recognition, pages 368–385.

[Wiener, 1947] Wiener, H. (1947). Structural determination of para�n boiling points.
Journal of the American Chemical Society.

[Wilson et al., 2005] Wilson, R. C., Hancock, E. R., and Luo, B. (2005). Pattern vectors
from algebraic graph theory. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(7):1112–24.

[Winston, 1970] Winston, P. (1970). Learning structural descriptions from examples.
Technical report, Massachusetts Institute of Technology.

179

BIBLIOGRAPHY

180

List of publications

The following publications are a direct consequence of the research carried out during
the elaboration of this thesis. They give a clear idea of the progression that has been
achieved over the span of thesis lifetime.

Journal paper

Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Lladós and Thierry Brouard.
(2012). Fuzzy Multilevel Graph Embedding. under review, submitted December 2011.
Pattern Recognition.

Book chapter

Thierry Brouard, Alain Delaplace, Muhammad Muzzamil Luqman, Hubert Cardot,
and Jean-Yves Ramel. (2010). Design of evolutionary methods applied to the learning of
Bayesian network structures. in Bayesian Network, ISBN: 978-953-307-124-4, Sciyo, pp.
13-38.

International conference contributions

Muhammad Muzzamil Luqman, Jean-Yves Ramel, Josep Lladós and Thierry Brouard.
(2011). Subgraph Spotting through Explicit Graph Embedding: An Application to Con-
tent Spotting in Graphic Document Images. in Eleventh International Conference on
Document Analysis and Recognition (ICDAR), volume 11, IEEE Computer Society, pp.
870-874.

181

LIST OF PUBLICATIONS

Muhammad Muzzamil Luqman, Thierry Brouard, Jean-Yves Ramel and Josep Lladós.
(2010). A Content Spotting System For Line Drawing Graphic Document Images. in
Twentieth International Conference on Pattern Recognition (ICPR), volume 20, IEEE
Computer Society, pp. 3420-3423.

MuhammadMuzzamil Luqman, Thierry Brouard and Jean-Yves Ramel. (2009). Graphic
Symbol Recognition using Graph Based Signature and Bayesian Network Classifier. in
Tenth International Conference on Document Analysis and Recognition (ICDAR), volume
10, IEEE Computer Society, pp. 1325-1329.

Selected papers for post-workshop LNCS publication

Muhammad Muzzamil Luqman, Josep Lladós, Jean-Yves Ramel and Thierry Brouard.
(2010). A Fuzzy-Interval Based Approach For Explicit Graph Embedding. in Lecture
Notes in Computer Science, Recognizing Patterns in Signals, Speech, Images, and Videos,
volume 6388, pp. 93-98.

Muhammad Muzzamil Luqman, Mathieu Delalandre, Thierry Brouard, Jean-Yves
Ramel and Josep Lladós. (2010). Fuzzy Intervals for Designing Structural Signature:
An Application to Graphic Symbol Recognition. in Lecture Notes in Computer Science,
Graphics Recognition. Achievements, Challenges, and Evolution, volume 6020, pp. 12-24.

International workshop contributions

Muhammad Muzzamil Luqman, Josep Lladós, Jean-Yves Ramel and Thierry Brouard.
(2011). Dimensionality Reduction for Fuzzy-Interval Based Explicit Graph Embedding.
in Ninth IAPR International Workshop on Graphics RECognition (GREC), volume 9, pp.
117-120.

Muhammad Muzzamil Luqman, Mathieu Delalandre, Thierry Brouard, Jean-Yves
Ramel and Josep Lladós. (2009). Employing fuzzy intervals and loop-based methodol-
ogy for designing structural signature: an application to symbol recognition. in Eighth
IAPR International Workshop on Graphics RECognition (GREC), volume 8, p. 22-31.

182

LIST OF PUBLICATIONS

Francophone conference contributions

Muhammad Muzzamil Luqman, Thierry Brouard, Jean-Yves Ramel and Josep Lladós.
(2012). Recherche de sous-graphes par encapsulation floue des cliques d’ordre 2: Appli-
cation á la localisation de contenu dans les images de documents graphiques. in Colloque
International Francophone sur l’Ecrit et le Document, to appear (accepted).

Muhammad Muzzamil Luqman, Thierry Brouard, Jean-Yves Ramel and Josep Lladós.
(2010). Vers une approche floue d’encapsulation de graphes: application á la reconnais-
sance de symboles. in Colloque International Francophone sur l’Ecrit et le Document, pp.
169-184.

183

Abstract :

This thesis addresses the problem of lack of e�cient computational tools for graph based structural

pattern recognition approaches and proposes to exploit computational strength of statistical pattern

recognition. It has two fold contributions. The first contribution is a new method of explicit

graph embedding. The proposed graph embedding method exploits multilevel analysis of graph for

extracting graph level information, structural level information and elementary level information

from graphs. It embeds this information into a numeric feature vector. The method employs fuzzy

overlapping trapezoidal intervals for addressing the noise sensitivity of graph representations and

for minimizing the information loss while mapping from continuous graph space to discrete vector

space. The method has unsupervised learning abilities and is capable of automatically adapting

its parameters to underlying graph dataset. The second contribution is a framework for automatic

indexing of graph repositories for graph retrieval and subgraph spotting. This framework exploits

explicit graph embedding for representing the cliques of order 2 by numeric feature vectors, together

with classification and clustering tools for automatically indexing a graph repository. It does not

require a labeled learning set and can be easily deployed to a range of application domains, o↵ering

ease of query by example (QBE) and granularity of focused retrieval.

Keywords :

Pattern recognition, graph clustering, graph classification, graph embedding, subgraph spotting,

fuzzy logic, graphics recognition.

Résumé :

Cette thése aborde le probléme du manque de performance des outils exploitant des représentations

á base de graphes en reconnaissance des formes. Nous proposons de contribuer aux nouvelles

méthodes proposant de tirer partie, á la fois, de la richesse des méthodes structurelles et de la ra-

pidité des méthodes de reconnaissance de formes statistiques. Deux principales contributions sont

présentées dans ce manuscrit. La premiére correspond á la proposition d’une nouvelle méthode de

projection explicite de graphes procédant par analyse multi-facettes des graphes. Cette méthode

e↵ectue une caractérisation des graphes suivant di↵érents niveaux qui correspondent, selon nous,

aux point-clés des représentations á base de graphes. Il s’agit de capturer l’information portée

par un graphe au niveau global, au niveau structure et au niveau local ou élémentaire. Ces in-

formations capturées sont encapsulées dans un vecteur de caractéristiques numériques employant

des histogrammes flous. La méthode proposée utilise, de plus, un mécanisme d’apprentissage non

supervisée pour adapter automatiquement ses paramètres en fonction de la base de graphes á

traiter sans nécessiter de phase d’apprentissage préalable. La deuxième contribution correspond

á la mise en place d’une architecture pour l’indexation de masses de graphes afin de permettre,

par la suite, la recherche de sous-graphes présents dans cette base. Cette architecture utilise la

méthode précédente de projection explicite de graphes appliquée sur toutes les cliques d’ordre 2

pouvantêtre extraites des graphes présents dans la base á indexer afin de pouvoir les classifier.

Un partitionnement des cliques permet de constituer l’index qui sert de base á la description des

graphes et donc á leur indexation en ne nécessitant aucune base d’apprentissage pré-étiquetées. La

méthode proposée est applicable á de nombreux domaines, apportant la souplesse d’un système de

requête par l’exemple et la granularité des techniques d’extraction ciblée (focused retrieval).

Mots clés :

Reconnaissance des formes, partitionnement de graphes, classification de graphes, projection de

graphes, repérage de sous-graphes, logique floue, reconnaissance de graphiques.

	Introduction
	Definitions and notations
	Introduction
	Terminology on graphs
	 Graph
	 Subgraph
	 Clique
	 Attributed Graph (AG)
	Important features of graphs
	 Graph order
	 Graph Size
	 Node degree
	Representation and processing of graphs
	 Adjacency matrix of a graph
	 Laplacian matrix of a graph
	 Graph matching and graph isomorphism
	 Subgraph isomorphism
	 Maximum common subgraph (mcs)
	 Median graph
	 Graph edit distance (GED)
	 Graph Embedding (GEM)
	 Explicit Graph Embedding
	Graph retrieval and subgraph spotting

	State of the art
	Introduction
	Structural pattern recognition
	Statistical pattern recognition

	Graph representation of images
	Graph of pixels
	Graph of characteristic points
	Graph of primitives
	Region adjacency graph
	Conclusion

	Graph matching
	Exact graph matching and graph isomorphism
	Error tolerant graph matching
	Distance between two graphs
	Graph embedding

	Fuzzy logic
	Limitations of existing methods and our contributions

	Fuzzy Multilevel Graph Embedding
	Introduction
	Overview of fuzzy multilevel graph embedding (FMGE)
	Description of feature vector of FMGE

	Framework of fuzzy multilevel graph embedding (FMGE)
	Unsupervised learning phase
	Graph embedding phase

	Conclusion

	Graph retrieval and subgraph spotting through explicit graph embedding
	Introduction
	Automatic indexing of a graph repository
	Subgraph spotting
	Conclusion

	Experimentations
	Introduction
	Graph databases
	Graph classification
	Graph clustering
	Graph retrieval and subgraph spotting
	Application of FMGE to graphics recognition
	Representation phase
	Description phase (FMGE)
	Classifier learning phase
	Classification phase (graphic symbol recognition)
	Symbols with vectorial and binary noise
	Symbols with contextual noise
	Complexity of FMGE

	Conclusion

	Discussion and Conclusions
	Discussion about FMGE
	Parameters
	Complexity

	Conclusions
	Future challenges

	Appendix
	Graph databases
	IAM graph database repository
	Letter graphs
	GREC graphs
	Fingerprint graphs
	Mutagenicity graphs

	GEPR graphs

	Graphs representation of graphic document images

