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Abstract
This thesis begins by giving an overview of the domain of typical time series data and

how it has been used in matching, classification and retrieval problems. Several traditional
domains of application of time series data and some conventional technique of dataset
generation are also explained. Among many application of time series signals, one of the
main domain of application is word image matching/word spotting. Word spotting can be
defined as "localization of interested word in the dataset without actually interpreting the
content". For word spotting purpose, we represent the word images as time series signal
and then several sequence matching techniques have been applied for spotting a word in-
side document image. One of the typical approach in literature is to match these signals
by classical Dynamic Time Warping (DTW). However there exists several other improved
versions of DTW along with other robust sequence matching techniques. We did a com-
parative study of classical DTW technique and many of its improved modifications, as well
as other sequence matching techniques in the context of word spotting. An experimental
study on historical documents is performed to evaluate the behavior of DTW’s variants
and other sequence matching techniques.

After evaluating several sequence matching techniques and analyzing their pros and
cons, we propose a robust method to perform word spotting in degraded hand written and
printed document images. A new sequence matching technique, called as Flexible Sequence
Matching (FSM) algorithm is introduced for this task of word spotting by analyzing the
drawbacks and advantages of other sequence matching techniques. Along with the char-
acteristics of multiple matching (many-to-one and one-to-many), FSM is also capable of
skipping existing outliers or noisy elements, irrespective of it’s position in the target signal.
More precisely, in the domain of word spotting, FSM has the ability to retrieve complete
words or words containing only a part of the query. Furthermore, due to it’s adaptable
skipping capability, FSM is also less sensible to local variations in the spelling of words, and
also to local degradation effects within the word image. The multiple matching capability
(many-to-one, one-to-many) of FSM helps it to deal with stretching effects of query and/or
target images.

One of the main drawback of FSM is that it can’t skip outliers from query sequences,
which make FSM inferior in certain conditions when there is a presence of noise in target
signals as well as query signals. So, we propose another new sequence matching algorithm
called as Exemplary Sequence Cardinality (ESC). ESC is an extension of FSM. It has all
the qualities as FSM, in addition, ESC has the ability to skip the elements from query.
In case of word spotting application, the outliers skipping capability of ESC makes it less
sensible to local variations in the spelling of words, and also to noise present in the query
and/or in the target word images. Thanks to it’s outliers skipping facility from query
sequence, this technique gives more flexibility to user for choosing query images. This
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ABSTRACT

facility helps users to evade from rigorous searching for perfect query.
As another contribution in this thesis, we propose a shape code based word-image

matching technique for word retrieval in documents, written in Indian languages. Each
query word image to be searched is represented by a sequence of shape codes that corre-
sponds to primitives. Then an inexact string matching technique is applied for measuring
the similarity between the codes generated from the query word image and each candidate
word images, obtained from the document.

In brief, we have investigated and explored several dynamic programming based se-
quence matching techniques for word spotting and conventional sequence matching appli-
cations.

Keywords : Dynamic Time Warping, Sequence Matching, Word Spotting, Image
Matching, HOG Feature, Longest Common Subsequence, Shape Coding, Minimal Vari-
ance Matching, Optimal Sequence Bijection.
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Abstract

In this chapter, we give an overview of time series data in general and how it has been
used in classification problems. The goal of this chapter is also to expand the readers
appreciation for the ubiquity of time series data in addition to the traditional application
domains (e.g., stock market data, electrocardiograms, weather data, etc.). After postur-
ing the general overview of application of time series data, we discuss some conventional
techniques of dataset generation, coming from various domain of applications. Finally, we
conclude by describing one popular time series dataset archive, which would be used to
explore the proposed novel sequence matching techniques, mentioned in the subsequent
chapters of this thesis.
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1.1. DEFINITION OF TIME SERIES

1.1 Definition of Time Series

Due to the wide spread use of modern information technologies, a large number of
time series data can be accumulated. So, there is a basic and important need generated
for querying and indexing this huge data. Time series matching have been a prevalent
area of research in the domain of pattern matching, data mining, signal processing, medi-
cal studies, weather forecasting, financial market, meteorology and many other statistical
data analysis domains [Dietrich et al., 2004], [Eads et al., 2002], [Jalba et al., 2005], [Keogh
and Ratanamahatana, 2005], [Smolinski et al., 2008], [Niennattrakul and Ratanamahatana,
2007], [Übeyli, 2008], [Yu et al., 2007], [Xi et al., 2006]. Time series data can be available
from every aspect of human life. In a layman view, time series data can be defined as any
sequence of real values that is recorded during a regular time interval. Often, time series
data is accumulated by measurements of things, recorded over regular intervals of time
(e.g., every 15 minutes, every month, every year, etc.). However, any sorts of time inter-
vals (regular or irregular), which is ranging from millisecond upwards, are acceptable for
generating time series data. Literature survey reveals hundreds of algorithms, which have
been introduced to classify, cluster, segment, and index time series data, like nearest neigh-
bor classifier, various clustering techniques, support vector machine; neural networks [Eads
et al., 2002], [Güler and Ubeyli, 2005], [Ratanamahatana and Keogh, 2004b] etc. Whereas
classical algorithms assumes relatively low sequence dimensionality, time series data mining
algorithms must be able to deal with dimensionality in the hundreds or thousands. Except
the issues of high computational time, other problems exist for high dimensional time series
sequence matching. One of the critical issue is that as dimensionality increases, all objects
become essentially equidistant to each other, and thus classification and clustering lose
their meaning. This surprising characteristic is known as the curse of dimensionality and
has been the subject of extensive research. Also, presence of noise and intrinsic structure
of time series make them difficult to process and algorithms need to be adapted.

1.2 Introduction

Due to the growing utility from different field of applications, a notable research effort
has been devoted in time series matching. In this section, we give an brief overview
of case studies of the related works in domain of time series, more specifically in time
series matching, retrieval and classification. The classic and efficient way to measure the
distance between time series signals is by Euclidean metric [Faloutsos et al., 1994]. The
simplicity of Euclidean distance [Faloutsos et al., 1994], attracts the attention of research
community and makes it most popular dissimilarity measure in time series data mining
[Agrawal et al., 1993] [Keogh et al., 2001]. It requires that both input sequences be of
the same length, and but it is sensitive to distortions and shifting along the time axis
[Ratanamahatana and Keogh, 2005] [Jagadish and Faloutsos, 1998]. There are several
other techniques to classify time series signal are mentioned in literature. Through the
application of recurrent neural networks, Husken et.al. [Hüsken and Stagge, 2003] proposed
a technique for time series classification. For the classification of electroencephalogram
(EEG) signals, Guler et al. [Güler and Ubeyli, 2005] presented a wavelet based adaptive
neuro-fuzzy interference system model. For word image matching, Rath and Manmatha
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1.2. INTRODUCTION

[Rath and Manmatha, 2006] used DTW and compared the performance of their system
with some conventional techniques, including affine-correlated Euclidean distance mapping,
the shape context algorithm and correlation using sum of squared differences. For time
series classification, a time series representation model known as, Derivative Time Series
Segment Approximation(DSA) [Gullo et al., 2009] was proposed. This model combines the
notion for derivative estimation, segmentation and segment approximation, for supporting
accurate and fast similarity detection in time series data. A hybrid classification algorithm,
employing evolutionary computation for feature extraction and support vector machine for
classification with the selected features is proposed by Eads et.al. [Eads et al., 2002]. A
semi supervised technique for building classifiers is proposed by Wei et. al. [Wei and
Keogh, 2006]. One of the crucial point in time series classification is how to measure
the dissimilarity of time series. A comparative, well documented overview can be found
in [Ding et al., 2008]. Another direction of research with time series data is of predicting
future values from a series of past data extending up to the present. The primary goal
time series prediction algorithms is to improve prediction accuracy. There have been many
techniques to achieve this goal, for detail discussion, please see [Wakuya and Shida, 2002].
In the following section, we mainly focus our discussion on time series classification and
matching.

One of the most fundamental tasks in data mining domain is time series classification.
The classification of sequence of data is primarily performed by similarity matching be-
tween sequences. There are several real life examples of the applications of time series
classifications, e.g. image and pattern recognition, spam filtering, genome diagnosis, and
text mining of large amount of documents etc. The main goal of classification is to map
input data into predefined groups. The classifications are generally performed based on
priorly defined groups, and the tasks of any classification algorithm is to correctly classify
any data in it’s proper class. The classification techniques can be broadly categorized into
two sub category: i) learning based and ii) learning free. The learning based techniques
can further be grouped into two groups, called as a) supervised learning b) unsupervised
learning. The usual process of supervised learning is followed by predefining data for
training process and learning is made to recognize patterns of interest, whereas in case un-
supervised learning, the task is to find hidden structure in unlabeled data. The examples
used for learning are always unlabeled, so there is no error or reward signal which can be
repetitively used to learn the underlying algorithm.

In case of learning free approaches, the task of unclassified data classification, are often
performed by several pattern recognition techniques. Pattern recognition can be defined as
the classification technique where an input pattern is classified into one of several predefined
classes based on the similarity to these predefined classes. The accuracy of classification
algorithms is calculated by determining the percentage of objects identified as the correct
class. Among many other classification techniques, two of the popular approach of time
series classification are Decision trees and Nearest Neighbor classifier. In the case of decision
tree, a set of rules are generated from training data and based on these rules, a new data is
classified. One of the primary bottleneck of raw time series data is it’s high dimensionality
and the existing noise into it. These impediment of raw time series data results in deep,
bushy tree. One convenient approach is to represent the time series as regression tree and
then to use it as decision tree training. For the case of time series matching approaches,
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1.3. APPLICATION OF TIME SERIES IN VARIOUS DOMAIN

the classification accuracy is measured by running a one-nearest neighbor or k nearest
neighbors algorithm using leaving-one-out method. In each iteration, one most dissimilar
item is excluded from the dataset, this process is repeated n times, where n is the total
number of items in the dataset, until the calculation of closest match (for one nearest
neighbor). In the case of k nearest neighbors, the same process is performed for finding k
closest matches. Finally, based on the distance value between the query object and other
close matches, one label is assigned to the query object. The classification accuracy is the
percentage of objects that are correctly classified.

Recent advances in technology has made computers more powerful, which inherently
motivated researchers in the domain of time series indexing or retrieval [Agrawal et al.,
1993]. The tasks of time series indexing and query by content can be divided into two
broad categories: i) whole matching and ii) subsequence matching.

• Whole Matching: when time series query is matched against a database of individ-
ual time series of the same length, to identify the ones closer to the query sequence.

• Subsequence Matching: when the query sequence is shorter than target sequence.
The matching could be done by sliding along the longer sequence or directly by
finding the best sub-part into the longer sequence, which optimally corresponds the
query sequence.

While there are literally hundreds of methods proposed for whole sequence matching (see
e.g., [Keogh and Kasetty, 2003] and references therein), in practice, its application is limited
to cases where some information about the data is known a priori. Subsequence matching
can be thought as special kind of whole sequence matching technique, where whole sequence
matching is attained by dividing the long sequence into equal size (same as the length of
query), small sequences. This division can be performed based on specific period or, more
arbitrarily by its shape. For example, a long speech signal can be divided into individual
signals of phonemes and can be matched with a query phoneme. This informal idea has
been used by many researchers. Given a database of sequences, the general way to find the
closest match to a given query sequence Q, is to perform a linear or sequential scan of series
by series. Each sequence is retrieved from disk and its distance to the query Q is calculated
according to the pre-decided distance measure to calculate the closest matched sequence
in the database. This brute-force technique is costly to implement due to its multiple
accesses to the disk. To alleviate this problem, one lower bound of the distance can be
determined and based in this lower bound, some irrelevant sequences in database can be
pruned off, which in terms help to reduce some unnecessary costlier disk accesses. The
lower bounding distance of a particular time series pair indicates that they are impossible
to be best matches.

1.3 Application of Time Series in Various Domain

Time series data can be extracted from almost every aspect of human life. A time series
database (or sequence database can be defined as a sequences of ordered events, with or
without concrete notions of time. Based on this definition, some of the multimedia data
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1.3. APPLICATION OF TIME SERIES IN VARIOUS DOMAIN

or the less-intuitive domains can be transformed into one or two dimensional time series
data.

1.3.1 Image Retrieval

The task of image retrieval is a big stake holder in the domain of information re-
trieval [Ratanamahatana, 2005]. With the recent advancement of digitization systems, a
large and distributed collections of scientific, artistic, technical, and commercial images
have become more prevalent, and easily accessible. Thus the demand for more sophisti-
cated and precise methods to perform similarity or semantic based queries have increased.
The image retrieval techniques can be divided into two broad categories i) annotation based
ii) content based. There are several issues with annotation based image retrieval system
e.g. labor dependency and lack of consistency due to large amount of manual annotations
required, whereas the later one gives an intuitive query interface and satisfactory retrieval
performance. As an example of leaf image retrieval system, the leaf shape can be repre-
sented by using a distance curve, which is a sequence of distances between its center point
and every point along the leaf contour. One good distinguishing factor for leaf image
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Overall, based on the existing sequence indexing and matching schemes, in this paper, we 

propose a new blade-based rotation-invariant sequence matching algorithm for more efficient 
leaf image retrieval. Unlike most existing sequence retrieval schemes that require huge CPU 
computation time for the image rotation invariance, our scheme guarantees the image rotation 
in a very short time by considering blade-based image rotation only and pruning unnecessary 
blade sequences in matching. Also, we propose a lower bounding function, LB_RI-PDTW, for 
RI-PDTW for pruning purpose.  

3. Preprocessing 
In this section, we consider preprocessing to extract a distance curve from a leaf image. The 
first step is to detect the contour of a leaf image. Then, distances between the center point and 
the contour points are calculated. By accumulating these distances along the x-axis, we can 
generate a sequence as the shape of a leaf image.  

3.1 Image Binarization 
To detect a contour from a leaf image, we first detected edge information. For edge detection, 
we applied a well-known edge detecting algorithm, Canny edge detection, to the leaf image. 
Fig. 1(b) shows the edges detected from a leaf image in Fig. 1 (a) using Canny edge detection. 
Using the edge information, we found the leaf contour. A detailed decription of contour 
detection is given in [19]. After detecting the contour, we converted it into a binary image by 
marking pixels within the edge with black, and marking background pixels with white. For 
example, the binarized image for Fig. 1 (b) is shown in (c). 

   

(a) (b) (c) 

Fig. 1. Image preprocessing: (a) original image, (b) edges by Canny edge detection algorithm, and (c) 
image binarization.  

3.2 Shape Descriptor and Normalization 
We can easily generate a distance curve for a binary leaf image. First, we calculate its 
geometric center point by averaging the x and y coordinates of all the pixels inside the leaf. 
This point has the property that its relative position within the image does not change during 
rotation or scaling. A simple equation for calculating a geometric center point is as follows:  

 

(a)
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Figure 2-4.  Many image indexing/classification tasks can be solved more effectively and 
efficiently after converting the image into a "pseudo time series" 

Each image is first converted from RGB to grayscale and from 8-bit image to a 

binary image (pixels brighter than 0.7 are set to white, otherwise to black).  Then, an edge 

detection algorithm is performed, and all the coordinates of the image’s edge are 

recorded.  Preliminarily, tracing the edge requires a user to mouse-click on the starting 

point (subsequent implementations allow the auto-detection of the starting point, e.g., the 

stem of a leaf, the neck or chin of a head profile, etc.).  The program then scans for object 

boundary in counterclockwise fashion to find the sequence of angles between two lines 

formed by the nth previous visited point, the current position, and the nth point ahead of 

the current position, where n is a small integer, depending on the size of the image and 

the smoothness of the final time series needed.  The larger the n value, the smoother the 

resultant time series.  The time series ends when the path traverses back to the starting 

point (or to some specific locations on the perimeter if the image is not closed).  Another 

benefit of representing an image in this “pseudo time series” is its invariance to its 

(b)

Figure 1.1: (a) Image preprocessing steps: Original image, edges by Canny edge detection
algorithm and image binarization (left to right)1. (b) Process of converting the image into
a pseudo time series3.

retrieval system is blade (the leaf structures) based matching. Most plants has an unique
shape of leafs that consists of one or more number of blades (see [Tak, 2008]). By gener-
ating distance curve from the leaf image, information of blade like distinguishing factors
can be easily represented. The process for obtaining the distance curve is quite straight
forward. One simple way to generate contours from the leaf image is to, binarize it first
and then to apply some edge detection technique e.g. canny edge detector (see Fig. 1.1a).
After obtaining the boundary of the image, the geometric center point can be calculated
by averaging the X and Y coordinates of all the pixels, inside the boundary of the leaf.
The relative position of this point does not change during scale and rotation. The time
series sequence can be generated by calculating the distance between all the points along
the contour in a clock -wise direction from the center point (see Fig. 1.1b). The curve
generated from two different size image of same leaf can have different magnitude. To

1Reprinted with permission from Chotirat Ratanamahatana, Improving Efficiency and Effectiveness of
Dynamic Time Warping in Large Time Series Databases, PhD thesis at University of California Riverside,
2005.
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1.3. APPLICATION OF TIME SERIES IN VARIOUS DOMAIN

avoid these sorts of problems, scaling invariant sequence matching technique should be
considered. One simple process of rescaling all present sequences in the database is by
calculating the maximum magnitude (m) from all the sequences in the database. Now any
sequence (s) can be rescaled by multiplying all of it’s elements by (mn ), where n is the
maximum magnitude of the particular sequence.

Hand written and machine printed word Images matching and retrieval is a well known
sub domain in the domain of image retrieval. With the recent advancement of digitization
technology, there have been many historical manuscripts are digitized by various public
libraries and several public and private organizations. Although these documents are dig-
itized, indexing and searching some contextual information inside these huge collection
of documents is a troublesome task. But, accessing information from these knowledge
resources are important for researchers/biographers. Recognition and retrieval of hand-
writing is a challenging task. Compared to the recognition of on-line handwriting, off-line
handwriting recognition is more difficult [Ratanamahatana, 2005]. Moreover, the prob-
lem of transcribing and indexing handwritten and printed documents is more troublesome.
The high degradation effects, font and script variabilities, presence of noise are the factors,
which makes the recognition difficult on historical documents. Compared to on-line hand
writing problem, the problem of indexing historical archives is difficult. In case of on-line
handwriting recognition, the information about pen acceleration, time stamp, pen pressure
information could be used for the recognition purpose. But for the case of off-line hand
writing recognition, there are no such information available and the hand writing on a page
has to be treated as an image. Moreover, in the case of historical hand written documents,
there are often highly stylized scripts and writing by multiple writers. For example, Fig.
1.2 shows an example of hand written text by George Washington. As it is visible from the
given image that even for modern readers with little knowledge on cursive hand writing,
it is difficult to understand the contents. Instead of recognizing complete text lines, a new
direction of research work has been emerged, which is known as: word spotting. Word
spotting can be defined as the technique of recognizing any word image, without transcrib-
ing text contents of image. Among several techniques, one way to do this is to represent
word images as a time series signals (see Fig. 1.2) and then applying time series matching
algorithms for matching two signals extracted from two different word images. Based on
the calculated distance between query and target word images, these ones are ranked and
hence retrieved.

1.3.2 Acoustic Wildlife Management

The interaction techniques between animals has always been a mystery for man-kind.
There have been several attempts by human to understand the science behind these inter-
action techniques. To discern the complex intercommunication techniques, biologist need
to be able to track their locations. Acoustic wildlife management is a domain of study to
measure the health of an ecosystem, e.g. monitoring the chirping of birds, croaking of frog,
hisses of snakes, screeching of bats and other insects, by adaptive, embedded networked
sensing technologies [Trifa et al., 2007]. An important application of adaptive sensory sys-
tems for biology is the surveillance of natural systems with the purpose of describing their
structure and behavior. To avoid the presence of human observers in the field, which is
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1.3. APPLICATION OF TIME SERIES IN VARIOUS DOMAIN

Figure 1: Part of a scanned document from the George Washington collection.

For collections of handwritten manuscripts written by a single author (or a few authors),

(for example the George Washington collection used in this paper), the images of multiple

instances of the same word are likely to look similar. Wordspotting, which was initially

proposed by Manmatha et al. [15], treats a collection of documents as a collection of word

images. First the document is segmented into word images. The idea of wordspotting

(see Figure 2) is to use image matching for calculating pairwise “distances” between word

images, which can be used to cluster all words occuring in a collection of handwritten

documents. Ideally, each cluster would contain all the words with a particular annotation.

Clusters that contain terms which are “interesting” for an index for the document collection,

are selected and labeled manually. By assigning the cluster labels to all word images

contained in a cluster, we get a partial transcription of the document collection. This in

turn allows us to create a partial index for the collection, which allows us to retrieve text

3

(a) Sample hand written page

(a) original image: slant/skew-normalized,
cleaned.

(b) normalized projection profile.

Figure 4: Original image and projection profile feature.

Figure 4 shows an example projection profile and the original image it was extracted from.

3.2 Word Profiles

Word profiles capture part of the outlining shape of a word. The current word matching

algorithm uses upper and lower word profiles: let is ink(I, r, c) be a function that returns

1 if the pixel I(r, c) is an “ink pixel”, and 0 if the pixel is a background pixel. This function

is currently realized using a thresholding technique which we have found to be sufficient for

our purposes. For more sophisticated foreground/background separation, see [11]. Using

is ink, the upper and lower word profiles can be calculated as follows:

up(I, c)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

undefined, if ∀r (is ink(I, r, c) = 0)

argmin
r=1,...,h

(is ink(I, r, c) = 1), otherwise

(2)

lp(I, c)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

undefined, if ∀r (is ink(I, r, c) = 0)

argmax
r=1,...,h

(is ink(I, r, c) = 1), otherwise

(3)

11

(b) Sample key-word Alexandria

(a) original image: slant/skew-normalized,
cleaned.

(b) normalized projection profile.

Figure 4: Original image and projection profile feature.

Figure 4 shows an example projection profile and the original image it was extracted from.

3.2 Word Profiles

Word profiles capture part of the outlining shape of a word. The current word matching

algorithm uses upper and lower word profiles: let is ink(I, r, c) be a function that returns

1 if the pixel I(r, c) is an “ink pixel”, and 0 if the pixel is a background pixel. This function

is currently realized using a thresholding technique which we have found to be sufficient for

our purposes. For more sophisticated foreground/background separation, see [11]. Using

is ink, the upper and lower word profiles can be calculated as follows:

up(I, c)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

undefined, if ∀r (is ink(I, r, c) = 0)

argmin
r=1,...,h

(is ink(I, r, c) = 1), otherwise

(2)

lp(I, c)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

undefined, if ∀r (is ink(I, r, c) = 0)

argmax
r=1,...,h

(is ink(I, r, c) = 1), otherwise

(3)
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(c) Normalized projection profileIf a column does not contain ink pixels, up and lp will be undefined (no distance to the

Figure 5: Normalized upper word profile (original in Figure 4(a), negative feature value
displayed).

nearest ink pixel from top or bottom of word image bounding box). A number of factors,

such as pressure on the writing instrument and fading ink affect the occurrence of such

gaps, which is not consistent for multiple instances of the same word. Therefore, gaps

where up and lp are undefined were closed by linearly interpolating between the nearest

defined values:

up′(I, c)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

interpolated value, if up(I, c) undefined

up(I, c), otherwise

(4)

f2 (and similarly f3 from lp′) can be obtained by normalizing up′ to the range [0..1]. Figure

5 shows an upper word profile feature, generated from the original in Figure 4(a).

3.3 Background/Ink Transitions

So far, the above features represent the distribution of ink in the columns of a word image

and the outlining shape of the word. To capture part of the “inner” structure of a word,

we chose to record the number of background to ink transitions nbit(I, c) in an image

column as the last feature. The range of this feature is normalized with a (conservatively
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(d) Normalized upper word profile

Figure 1.2: (a) An example of handwritten text from George Washington dataset3. (b) One
example of a key-word Alexandria, after removing the existing slant from the writing. There
are many techniques available to convert handwriting into time series: (c) the projection
profile i.e. total number of foreground pixels in each column. (d) the upper word profile
i.e. the location of top foreground pixels in each column.

both time consuming and troublesome to the habitat under observation, adaptive sensory
systems are highly useful. The signal shown in Fig. 1.3, is the screech of Strigiformes

Figure 2: Adaptive detection algorithm. Top: Am-
plitude of the signal of a field recording. Bottom:
Evolution of the energy in the signal is represented
as the thin line. The thick line represents the detec-
tion threshold. When a song is detected, one can see
that the threshold is not changed to avoid influencing
the statistical estimation of background noise.

Where ↵ 2 [0, 1] is the changing rate. A low value for ↵
should be used, as we want to avoid to consider spuri-
ous and short sounds as part of the background noise
and use this insignificant events to update the noise
distribution. Figure 2 illustrates the detection process
of seven bird songs recorded in the rain-forest at Monte
Azules Biosphere Natural Reservation in Mexico.

Using a modified and streamlined version of this
algorithm, described in [4], we have also detected yel-
low bellied marmot (Marmota flaviventril) alarm calls
in real-time on a network of fielded ENSBoxes. The
marmot detector computes a 32-point FFT over each
window of samples and computes the magnitude of the
complex sum of the frequency bins corresponding to
the band used by marmot calls (3-6 KHz). This en-
ergy value is then passed into a CFAR detector, with a
hysteresis detection to ensure that the complete call is
acquired. We found that we could improve e�ciency
without losing detections by applying the FFT only to
1 out of every 4 32-point windows.

2.4 Collaborative localization

Kung Yao and students have developed a localiza-
tion algorithm that can track multiple sources in real-
time [1]. They developed an approximate maximum-

likelihood (AML) method for the localization of wide-
band acoustic sources. The ML estimation method is
known to be an optimum estimation procedure. The
term approximate refers to the condition that the data
length is finite and consequent edge e↵ects yield a
slight sub-optimality from the ML method. The AML
algorithm has been used to perform localization of sin-
gle and multiple acoustic source(s), even when they
overlap in time and frequency, in the near/far-fields
as well as in open-field and in reverberant scenarios.
For each possible angle of arrival, the signals recorded
by each microphone are recombined using a model of
the array and the coherence of the resulting signal is
obtained for each angle.

Figure 3: Results of the collaborative localization al-
gorithm, presented as a 2D pseudo-likelihood map.
Black lobes represent the likelihood for source AOA.
Individual estimates of the angle of arrival (AOA) for
each node are combined using their location as esti-
mated by the self-calibration process.

In our implementation, every node that detects a
vocalization will also compute a likelihood describing
the likely bearing to the source. These likelihoods are
collected at a central point and combined together into
a 2D pseudo-likelihood map, according to the positions
and orientations computed in the self-calibration step.
This map is formed by projecting each likelihood met-
ric outwards from each node to form the joint approx-
imate likelihood of a source at every point in the 2D
space. Beyond source localization, this information
can also enable further signal enhancement through
beam-forming, in which signals captured from di↵er-
ent sensors are combined together to amplify the tar-
get signal and attenuate noise.

Figure 1.3: Adaptive detection algorithm. Top: Amplitude of the signal of a field recording.
Bottom: evolution of the energy in the desired signal represented by thin line. The thick
line represents the detection threshold and if the amplitude of any signal is greater than
this threshod value, it is considered as valid signal.

(owls). The domain experts have noted that most owls repeat their calls in a window of
eight to ten seconds and that the calls last from one to three seconds [Vincenzo, 2002]. But
an important drawback of such sensory system is that these systems are typically installed
to monitor twenty four hours a day, so the memory limits for storage or bandwidth limits
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for transmission, form a bottleneck on how much data can be retained in field deployed
sensors. For example, by using a simple thresholding algorithm, the researchers was able to
reduce half an hour of raw recording to only 13 seconds of useful audio [Trifa et al., 2007].
One kind of strange rhythm/reiteration can be observed in the singing or calls of animals of
many species for intra-specific communication [Dawson and Efford, 2009]. So by applying
an intelligent algorithm, the amount of data retained can be reduced by identifying the
repetitive nature of certain bird calls, while it can also reduce the false positive rate. For
example the sound data, captured from an installed sensor in a field, shows the following
behavior, mentioned in Fig.1.3. It is visible that these kinds of signal has a specific cyclic
pattern, which is a distinguishable property of such signals. Two or multiple different cap-
tured signals can be matched or classified by popular sequence matching techniques (e.g.
DTW), which could provide many information e.g. the type of animals, the different species
of a particular animal etc. Moreover, if these signals can be properly analyzed, matched
and classified, it can help to understand intercommunication and interaction techniques of
animals, birds, insects etc.

1.3.3 Shape Matching

Matching two dimensional shapes is an important problem with applications in the
domain of biometrics, industry, medicine and defense etc [Ratanamahatana, 2005]. The
problem of shape matching can be defined as the problem of describing a shape and cal-
culating it’s similarity with others. The distance measure used for the shape matching,
must be invariant to many distortions, including scale, offset, noise, partial occlusion, etc.
Although most of these distortions are relatively easy to handle, and particularly if the
well-known technique is used for converting the shapes into time series. There are several
techniques available in the literature for converting shapes into time series [Adamek and
O’Connor, 2004], [Attalla and Siy, 2005], [Antonio Cardone, Ra K. Gupta, 2003].

1.3.4 Text Mining

There have been several technique mentioned in the literature to transform text data
into a time series representation [Ratanamahatana, 2005]. One of the known technique to
transform is to utilize different combination of granularity (i.e. character or word level) to
extract text units from strings. For example, unigram, bigram or trigram could be used
to form subsequence of text line [Yang and Lee, ]. The work mentioned in [Yang and
Lee, ] transform texts into time series representation in the case when translated text is
available in both English and Spanish. The basic idea is to convert the bible text into bit
streams based on the occurrences of a particular word in the text. Then a time series can
be generated based on the number of word occurrences within a predefined sliding window
across the bit streams. As an example, let’s consider a sentence : In the beginning God
created the heaven and the earth and let’s focus on the word God. The mentioned sentence
can be represented by "0001000000" by considering the word "God" as a hit. But the
generation of bit stream depends on the size of sliding window. For example, if we consider
that the size of sliding window is 3 then the running example will generate the bit stream
as: 01110000. The idea behind this approach is based on the assumption that for each word
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0 200 400 600 800 1000 1200 

(a)

Mountain Gorilla 
(Gorilla gorilla beringei) 

Lowland Gorilla 
(Gorilla gorilla graueri) 

DTW 
Alignment 

(b)

Figure 1.4: (a)The process of converting shapes into time series: Initially from the raw
bitmap image of human skull (left most one), a contour is detected. After that the distance
from every point on the contour profile to the center is measured (middle one) and treated
as the Y-axis of a time series of length n (right most one). (b) The skull of Lowland Gorilla
and Mountain Gorilla are morphologically similar, except a small variability in different
proportions. DTW alike time series matching techniques can be used to align homologous
features in the time series representation space.

Flat-tailed Horned Lizard 
Phrynosoma mcallii 

Alignment by 
Dynamic Time Warping 

Texas Horned Lizard 
Phrynosoma cornutum 

(a) (b)

Figure 1.5: (a) The time series signal extracted from Flat-tailed Horned Lizard (Phryno-
soma mcallii) (top one). Texas Horned Lizard (Phrynosoma cornutum, bottom one) and
matched by DTW. (b) The images of two similar look alike fossils and the time series
signals extracted from these historical wall painting are matched by DTW.

in English, there must be a corresponding word in Spanish and this word in Spanish also
occur in the same vicinity of it’s corresponding English word (see Fig. 1.6). For example, to
find the similarity between two same documents, written in different languages (e.g. Bible
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streams are converted into time series by recording the total number of word occurrences 

within the predefined sliding window.   In this running example, given a sliding window 

of size 3, the resulted time series would be 01110000.  

 

Figure 2-6.  Times series of the number of occurrences of the word 'God' in English (top) and 
'Dios' in Spanish (bottom) bible text using 6,000 words as the window size (z-normalized and 
reinterpolated to the same length).  The two time series are almost identical 

The intuition behind this approach is that for each appearance of each word in 

English, there must be a corresponding Spanish word that also appears in the same 

vicinity in the Spanish bible text.  However, there can be some discrepancies in the 

number of words in the entire text as well as the position of the word within the sentence 

between the two languages due to different natures in the language structures.  This can 
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Figure 1.6: By using a window size of 6000 words, the times series of the number of
occurrences of the word ’God’ in English (top) and ’Dios’ in Spanish (bottom) in bible
text (z-normalized and reinterpolated to the same length) are shown. It can be visible that
when the window size is quite large, the two time series are almost identical3.

in English and Spanish), the frequency of occurrences of a particular word (or multiple
words) and it’s position in the text can be mapped as a time series signals, which then
can be compared by any relevant time series matching techniques (e.g. DTW). The small
discrepancy in total number of words in entire text and the position of words within the
sentence between two languages due to different nature of language structure should be
handled by concerned time series matching algorithms.

1.3.5 Genome/DNA Mining

To evaluate evolutionary relationship between different organisms, the understanding
of the differences between DNA symbolic records are required. To achieve this, global
multiple sequence alignment is needed. But performing perfect similarity measure is a
difficult task and that’s why this process requires user intervention for exact alignment of
the sequences. To characterize the similar sequences, the existing similarity between shapes
of the curves has to be characterized. The common approach to represent DNA sequence
by symbolic notation (e.g. symbols A,C,G,T for DNA bases). But the problem of these
methods are that they are highly computationally expensive. Moreover these techniques
are highly sensitive to errors and mathematical evaluation is difficult with these kinds
of representations. One of the principal step in genome matching problem is to transform
DNA symbolic record into numerical form. The process of transformation is very important
because all biological properties described in the original symbolical form must be retained
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in the final genomic signal [Yau et al., 2003] [Cristea, 2002]. The curves for cumulated
phase for human, rhesus macaque and chicken are shown in Fig. 1.7. It can be visible that
there are high similarity between human and rhesus genomic signals whereas the curve of
chicken is highly different from all other chosen organisms because all other species are
mammals. However certain degree of similarity is visible between the curves of mammals
and chicken.

The dynamic time warping seems suitable for adjustment
of derived genomic signals. DTW originally serves for pro-
cessing of digital signals sampled at defined time instances.
In genomic signals, time instances are represented by
indexes of nucleotides. The signals based on cumulated
phase carry not only useful information, but also noise.
Genomic signals preprocessing is necessary to accentuate
the position information.

Genomic signals preprocessing
The preprocessing of genomic signals consists of four
steps. The aim is to obtain size adjusted signals suitable
for time alignment or, in our case the signals with adjusted
size of phase suitable for sequence position alignment. In
the first step, the genomic signals were filtered by a simple
median filter with a window size of four samples. This sig-
nal modification ensures that the values of individual sam-
ples do not affect the similarity comparison, but only the
significant trend in the signal.
One of the main disadvantages of the symbolic sequence

alignment is the requirement to compare all positions.
Alignment of the signal representation of genes compares
the common segments. Thus, we need to keep only the
important components of the signal and we do not need
all samples. The second step of preprocessing consists in

resampling of signals. The resampling (downsampling)
depending on spectral distribution of signal components
represents the second stage of preprocessing. The ratio of
resampling was estimated based on the power spectrum of
genomic signals. The downsampling factor was set to the
value of 10. The new sampling frequency (fs) of the signal
was set with respect to preserve 99.5 % of signal spectral
energy.
In the third step, normalization of signals level between

1 and 0 was performed using the linear transform function
to ensure the consistent range of values of all signals.
Signals of cumulated phase contain significant trend
caused by principle of evaluation of the phase. However,
the trend does not carry useful information regarding
alignment. The trend has nonlinear character and it is
necessary to remove it for comparison of local genetic
information regardless of the position in the signal. Thus,
polynomial detrendisation procedure is the final (fourth)
step of genomic signals preprocessing. The estimation of
polynomial trend and resulting signal after its removal is
shown in Figure 1b. The fourth order polynomial function
was found the most suitable for this purpose.
Three signals from Figure 1a were replotted after all

mentioned modifications and are shown in Figure 1c. The
signals of human and rhesus macaque are almost identical.

Table 1 The specifications of ten DNA sequences from different organisms coding ACTA1
Organism Chromosome Accession Region (sequence position) Sequence length (bp)

Homo sapiens (human, Hominidae) 1 NC_000001.10 229566993.. ..229569844 2852

Pongo abelii (Sumatran orangutan, Hominidae) 1 NC_012591.1 20230379.. ..20233215 2837

Macaca mulatta (Rhesus macaque, Cercopithecidae) 1 NC_007858.1 227524284.. ..227527141 2858

Callithrix jacchus (Common marmoset, Cebidae) 19 NC_013914.1 15737624.. ..15740450 2827

Mus musculus (House mouse, Muridae) 8 NC_000074.5 126415668.. ..126418637 2970

Rattus norvegicus (Brown rat, Muridae) 19 NC_005118.2 54081497.. ..54084509 3013

Sus scrofa (Wild boar, Suidae) 14 NC_010456.4 65236451.. ..65239197 2747

Bos taurus (Cattle, Bovidae) 28 NC_007329.5 427530.. ..430286 2757

Equus caballus (Horse, Equidae) 1 NC_009144.2 68408850.. ..68411788 2939

Gallus gallus (Chicken, Phasianidae) 3 NC_006090.3 39337938.. ..39340802 2865

Figure 1 Genomic signals preprocessing. a) The record of cumulated phase of the DNA sequences of tree different organisms. b) The
principle of detrendization of genomic signal of human ACTA1. c) The resulting preprocessed genomic signals ready for DTW.

Skutkova et al. BMC Bioinformatics 2013, 14(Suppl 10):S1
http://www.biomedcentral.com/1471-2105/14/S10/S1
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Figure 1.7: The record of cumulated phase of the DNA sequences of three different organ-
isms.

1.3.6 Phoneme Classification

Automatic classification of phonemes are one of the highly researched topic in the do-
main of speech recognition. Phonemes are the smallest units of intelligible sound, produced
by human, whereas phonetic spelling is the sequence of phonemes that a word comprises.
For example, the word boss has two phonetic spelling for British and American accents.
Two pronunciation of the word boss are shown in following Fig. 1.8. In earlier decade,
the phonetic segmentation was a big challenge but with the recent advancement of various
phonetic segmentation techniques, automatic generation of million phonemes has become
more easier. Automatic speech recognition is highly useful for robust speech recognition,
speech quality scoring and dialect/accent recognition. Classifying these phonemes is a
challenging task for data mining community because of large number of classes and the
complexities of existing algorithms. For example, there are almost 107 phonemes, 52 di-
acritics and 4 prosodic marks (covering various languages 2) according to International
Phonetic Alphabets (IPA). The other issue is that the basic units of phonemes is highly
depended on speakers, dialects, accents, noise in the environment and errors in automatic
generation of phonemes. Most of the works in last 20 years in this domain are based on the
well known speech TIMIT dataset [Garofolo et al., 1993]. TIMIT is specifically designed
for speaker invariant phoneme classification. The main tasks for automated phonotactic

2https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
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Abstract— Phonemes are the smallest units of sound produced
by a human being. Automatic classification of phonemes is a
well-researched topic in linguistics due to its potential for robust
speech recognition. With the recent advancement of phonetic
segmentation algorithms, it is now possible to generate datasets
of millions of phonemes automatically. Phoneme classification on
such datasets is a challenging data mining task because of the
large number of classes (over a hundred) and complexities of the
existing methods.

In this paper, we introduce the phoneme classification problem
as a data mining task. We propose a dual-domain (time and
frequency) hierarchical classification algorithm. Our method uses
a Dynamic Time Warping (DTW) based classifier in the top
layers and time-frequency features in the lower layer. We cross-
validate our method on phonemes from three online dictionaries
and achieved up to 35% improvement in classification compared
to existing techniques. We provide case studies on classifying
accented phonemes and speaker invariant phoneme classification.

I. INTRODUCTION

Phonemes are the smallest units of intelligible sound and
phonetic spelling is the sequence of phonemes that a word
comprises. For example, the word boss has two phonetic
spellings for British (/b s/) and American (/b :s/) accents. In
Figure 1, two versions of boss are shown with the phonemes
labeled.
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British : bǢsAmerican : bǡəs

bbbb ǡəǡəǡəǡə ssss bbbb ǢǢǢǢ ssss

Fig. 1: Two waveforms of the word boss pronounced by
American and British accented speakers. The American accent
has a prolonged vowel, while the British accent does not. The
British accent places less stress on the ending “s.” The perfect
segmentation of the phonemes produced by Forced Aligner
[25] is shown in color.

In this paper, we consider the problem of automatic
phoneme classification that can be used for robust speech
recognition, accent/dialect detection, speech quality scoring,

etc. Phoneme classification is inherently complex for two
reasons. First, the number of possible phonemes is at least 107,
based on the international phonetic alphabet (IPA). Therefore,
this problem is a many class classification task for time series
data. Second, phonemes suffer from variability in speakers,
dialects, accents, noise in the environment, and errors in
automatic segmentation.

There have been a plethora of works on phoneme classi-
fication in the signal processing and linguistics communities.
Most of the works over the last twenty years are based on
the classic TIMIT [11] dataset using statistical machine learn-
ing techniques. TIMIT is specifically designed for speaker-
invariant phoneme classification. However, to build a robust
phoneme classifier that can work in public environments with
all kinds of variations, the classifier needs to learn from
heterogeneous sources of data covering a large number of
people, languages, age groups, etc. Therefore, we have taken a
data-driven approach, which illustrates the phenomenon where
a large amount of data can solve this complex problems with
a simple and intuitive algorithm.

In this work, we have created a dataset of 370,000 phonemes
automatically segmented from three online dictionaries cover-
ing the entire corpus of English words. We use a hierarchy of
nearest neighbor classifiers using time and frequency domain
features. We use a Dynamic Time Warping (DTW) based
classifier in the top levels and frequency features in the lower
layer. We adopt recent optimization techniques of time series
similarity search for widely varying phoneme lengths. Our
method performs 35% more accurately than other hierarchical
classification techniques. We show case studies on the appli-
cability of our classifier for accented phoneme recognition and
speaker-invariant phoneme recognition.

The rest of this paper is organized to provide some back-
ground on phoneme classification in the beginning. We de-
scribe our data cleaning process to set more context in Section
III. We move to describing our algorithmic techniques in
Section IV and V. The last two Sections VI and VII discuss
the experimental findings and case studies on related problems.

II. BACKGROUND AND RELATED WORK

The number of phonemes in a language varies with the
dialects of that language. The complete set of phonemes
and their hierarchical organization have been made by the
International Phonetic Association. There are 107 letters, 52

Figure 1.8: Two waveforms generated from the pronunciation of the word boss by American
and British accented speakers. It is visible from the signal that American accent has a
prolonged vowel, while the British accent does not have the elongated vowel. Also the
British accent places less stress on the endings. The perfect segmentation of the phonemes
produced by Forced Aligner [Jiahong Yuan, 2008] is shown in color.

processing [Rama, 2013] is phoneme segmentation, classification, and recognition. Seg-
mentation finds the phoneme boundaries inside a speech sequence. Classification identifies
each individual phoneme, and recognition decodes the sequence of phonemes taking into
account segmentation and classification errors. These three tasks are sequential but interde-
pendent. Various time series matching techniques (e.g DTW) could be used for performing
these aforementioned tasks in pipeline or individually.

1.4 Time Series Datasets

To explore the spectrum of research in time series domain, and especially to evaluate
classification and matching accuracy of the techniques, proposed by researchers, one well
know bench mark of time series data have been created. This benchmark dataset is known
as UCR dataset3. This time series dataset has been highly used by several researchers,
working in the domain of time series matching and classification problem. UCR archive
consists of total 47 datasets (see Table 1.2). These data sets include real-life time series,
synthetic time series, and generic time series, come from different application domains and
are obtained from the UCR Time Series Classification/Clustering archive ( [Chen et al.,
2105]). Information on the data sets used is given in Table 1.2. For the detailed descriptions
of the data sets, please see [Chen et al., 2105]. In the following section, we describe in more
details, some of these datasets.

1.4.1 Trace Dataset

This synthetic dataset was designed to simulate instrumentation failures in a nu-
clear power plant (Transient Classification Benchmark (Trace Project)) [Ratanamahatana,
2005] [Roverso, 2000]. The original dataset consists of 16 classes and 50 instances in each

3http://www.cs.ucr.edu/~eamonn/time_series_data/
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class. Four features are included from each instances. For reducing the complexity of the
experiments, only second feature of classes 2 and 6, and the third feature of classes 3 and
7 are extracted in the UCR dataset. Hence, this modification results in a 4-class problem,
where in the reduced set, the training and testing dataset is consisting of 200 instances, 50
for each class. All instances are interpolated to have the same length of 275 data points.
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Figure 2-12. Image samples from each of six different species of Maple and Oak 

As described earlier in Section 2.2.2, the first image-processing procedure is to 

perform an edge detection, and then starting from the stem of the leaf, the path along the 

edge is ‘unrolled’ in a counterclockwise direction into time series of angles measured at 

each pixel point along the boundary of the leaves.   

Since the time series always start at the stem (or the bottom of the leaf if no stem 

is present) and are interpolated and normalized, the rotation and size of the leaf images 

are irrelevant.  After transforming each image into time series, it is z-normalized and 

linearly interpolated to have the same length of 150 data points, as illustrated in Figure 

2-13 (next page).   

Circinatum GlabrumGarryana

NegundoMacrophyllumKelloggii

Circinatum GlabrumGarryana

NegundoMacrophyllumKelloggii
(a)
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Figure 2-13. Sample pseudo time series extracted from each of the six Maple and Oak species, 
after reinterpolation and z-normalization 

2.3.7 Face Dataset 

To further explore the utility of the proposed framework in this dissertation, 

another dataset is created for problem of face classification based on the head profile.  A 

number of photographs are taken from four individuals.  Each person is instructed to 

show different expressions on the face, such as smiling, talking, frowning, etc.  Twenty-

two photos are taken from the male first individual, thirty-four from the male second 

individual, twenty-nine from the female third individual, and twenty-seven from the male 

fourth individual, giving a total of 112 instances in this dataset.   A similar method of 

transforming an image into time series is applied; starting from the neck area, the head 

profile is unrolled into a “pseudo time series,” as shown in Figure 2-14.  All time series 
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Figure 1.9: The record of cumulated phase of the DNA sequences of three different organ-
isms3.

1.4.2 Leaf Dataset

Six different species of leaf images are considered in this dataset of leaf images. This
dataset was created by Ratanamahatana et.al. [Ratanamahatana, 2005]. The original
isolated leaf color images are obtained from the Machine Learning Group, Oregon State
University 4. The dataset contains four species of Maple plant and two different species of
Oak plants. The following Table. 1.1 describes the details about this dataset. The illus-

Species No. of images Class
Circinatum (Vine Maple) 66 1

Garryana (Oregon White Oak) 84 2
Glabrum (Douglasii Maple) 75 3

Kelloggii (California Black Oak) 97 4
Macrophyllum (Big Leaf Maple) 82 5

Negundo (Boxelder Maple) 38 6
Total 442

Table 1.1: Details of leaf dataset

4http://web.engr.oregonstate.edu/~tgd/leaves/dataset/isolated.tar
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1.5. CONCLUSION

tration of each species of leaf images can be visible in Fig.1.9a. The same aforementioned
approach (see Section 1.3.1) for converting leaf image into time series signal is used here
also. The rotation and size of leaf images are not relevant because the time series is always
generated from the beginning of the stem or bottom of the leaf if no stem is present in the
leaf. The extracted time series are z-normalized and linearly interpolated to have the same
length of 150 data points (see Fig.1.9b).

1.4.3 Face Dataset

To explore the utility of the time series matching techniques on face classification prob-
lem, another dataset was created based on the head profile taken from photographs of four
individuals [Ratanamahatana, 2005]. To generate 112 instances of this dataset, each person
was instructed to show different expressions on the face, such as smiling, talking, frown-
ing, etc. A similar aforementioned technique of transforming an image into time series is
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are then z-normalized and linearly interpolated to have the same length of 350 data 

points. 

 

Figure 2-14. Starting from the neck area, the head profile is converted into a "pseudo time 
series" 

2.3.8 Cylinder-Bell-Funnel Dataset 

This is a synthetic three-class dataset used in [Kad99], which is generated by the 

following equations: 
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Figure 1.10: Starting from the neck area, the head profile is unrolled into a z-normalized
and linearly interpolated "pseudo time series" 3.

applied here; starting from the neck area, the head profile is unrolled into a z-normalized
and linearly interpolated "time series" (having 350 data points), as shown in Fig. 1.10.

1.5 Conclusion

In this chapter, we have presented the importance of time series for the research in var-
ious domain of applications. From the discussion in this chapter, we have seen that there
are many field of application, each of them has it’s own specificities. It is explained in
this chapter that among various utilities of time series signals, classification, matching and
retrieval tools are of huge importance. We have also seen that there exists some applica-
tions, which are not originally from the domain of time series but there are well established
techniques to generate time series signals from these domains and then to take benefits
of existing tools of the time series domain e.g. image matching, DNA sequence matching,
text mining etc. In the following chapters, we will focus on one specific application domain
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1.5. CONCLUSION

Table 1.2: Statistics of UCR datasets.

most data sets. This is especially clearly seen for the mean of rela-
tive errors presented in Table 3.

The average relative error reduction for all data sets is equal to
33.21% for DDLCSS and 37.72% for 2DDLCSS, compared with LCSS. A
graphical comparison of methods is presented in Fig. 4. We see that
the new methods are clearly superior to the LCSS dissimilarity
measure on most of the examined data sets. Additionally we can
see that the 2DDLCSS method outperforms DDLCSS (with an average
relative error reduction for all data sets equal to 9.72%).

It is not very useful to have a method that will perform well
only on some problems, unless we can tell in advance on which
problems it will be better. We must prove that we can predict
ahead of time when our method will have better performance.
Batista et al. [3] proposed a way of doing this. We can examine
the accuracy of the compared methods by looking only at the train-
ing data set, and use these results to choose an algorithm to use to
classify the testing data set. We measure the accuracy of the exam-
ined methods on the training data set using leaving-one-out cross-
validation, and calculate the expected change in accuracy as

accuracy 2DDLCSS

accuracy DDLCSS
:

Values greater than one indicate that we expect 2DDLCSS to out-
perform DDLCSS on the given data set. In the same way we measure
the actual change in accuracy using the testing data set. The results
are shown in Fig. 5 (we removed the point for the data set Adiac be-
cause of the scaling of the figure – it lies in the far top right of the
diagram).

We can mark regions of the diagrams with the familiar labels:

TP In this region we correctly predicted that 2DDLCSS would
improve accuracy.

TN In this region we correctly predicted that 2DDLCSS would
decrease accuracy.

FN In this region we incorrectly predicted that 2DDLCSS would
decrease accuracy.

Table 1
Summary of data sets.

Data set Number of Size of Size of Time series
classes training set testing set length

50Words 50 450 455 270
Adiac 37 390 391 176
Beef 5 30 30 470
Car 4 60 60 577
CBF 3 30 900 128
ChlorineConcentration 3 467 3840 166
CinC_ECG_torso 4 40 1380 1639
Coffee 2 28 28 286
Cricket_X 12 390 390 300
Cricket_Y 12 390 390 300
Cricket_Z 12 390 390 300
DiatomSizeReduction 4 16 306 345
ECG200 2 100 100 96
ECGFiveDays 2 23 861 136
Face (all) 14 560 1690 131
Face (four) 4 24 88 350
FacesUCR 14 200 2050 131
Fish 7 175 175 463
Gun-Point 2 50 150 150
Haptics 5 155 308 1092
InlineSkate 7 100 550 1882
ItalyPowerDemand 2 67 1029 24
Lightning-2 2 60 61 637
Lightning-7 7 70 73 319
MALLAT 8 55 2345 1024
MedicalImages 10 381 760 99
MoteStrain 2 20 1252 84
Non-Invasive Thorax1 42 1800 1965 750
Non-Invasive Thorax2 42 1800 1965 750
OliveOil 4 30 30 570
OSU Leaf 6 200 242 427
Plane 7 105 105 144
SonyAIBORobot Surface 2 20 601 70
SonyAIBORobot SurfaceII 2 27 953 65
StarLightCurves 3 1000 8236 1024
Swedish Leaf 15 500 625 128
Symbols 6 25 995 398
Synthetic Control 6 300 300 60
Trace 4 100 100 275
Two Patterns 4 1000 4000 128
TwoLeadECG 2 23 1139 82
uWaveGestureLibrary_X 8 896 3582 315
uWaveGestureLibrary_Y 8 896 3582 315
uWaveGestureLibrary_Z 8 896 3582 315
Wafer 2 1000 6174 152
WordsSynonyms 25 267 638 270
Yoga 2 300 3000 426

Table 2
Testing error rates (in %).

Data set LCSS DDLCSS 2DDLCSS

50Words 31.65 26.59 25.05
Adiac 97.19 85.68 57.54
Beef 56.67 46.67 46.67
Car 56.67 18.33 16.67
CBF 4.00 1.22 1.22
ChlorineConcentration 61.54 49.77 43.85
CinC_ECG_torso 7.10 7.10 7.10
Coffee 50.00 10.71 10.71
Cricket_X 25.90 25.90 25.90
Cricket_Y 21.28 18.72 18.72
Cricket_Z 24.36 24.10 24.87
DiatomSizeReduction 69.93 11.76 11.76
ECG200 12.00 11.00 13.00
ECGFiveDays 5.69 5.57 5.57
Face (all) 24.38 22.43 20.18
Face (four) 18.18 18.18 18.18
FacesUCR 10.00 8.34 8.54
Fish 85.14 8.00 5.71
Gun-Point 26.67 6.00 3.33
Haptics 69.16 68.18 68.18
InlineSkate 77.82 61.45 51.64
ItalyPowerDemand 20.80 5.73 6.71
Lighting-2 18.03 18.03 18.03
Lighting-7 42.47 46.58 45.21
MALLAT 45.88 9.00 6.01
MedicalImages 33.42 33.16 34.47
MoteStrain 13.50 15.18 15.18
Non-Invasive Thorax1 85.80 37.25 25.60
Non-Invasive Thorax2 74.66 21.48 17.46
OliveOil 83.33 83.33 83.33
OSU Leaf 37.19 17.36 14.05
Plane 19.05 0.00 0.00
SonyAIBORobot Surface 29.12 29.12 13.31
SonyAIBORobot SurfaceII 16.37 16.37 14.27
StarLightCurves 17.28 5.63 3.91
Swedish Leaf 70.88 16.48 10.56
Symbols 20.70 3.82 3.22
Synthetic Control 6.00 6.00 6.00
Trace 26.00 4.00 4.00
Two Patterns 0.08 0.08 0.08
TwoLeadECG 48.46 18.44 6.94
uWaveGestureLibrary_X 32.69 20.49 20.02
uWaveGestureLibrary_Y 40.82 28.64 28.31
uWaveGestureLibrary_Z 37.52 27.50 25.77
Wafer 0.49 0.49 0.49
WordsSynonyms 33.07 27.43 27.90
Yoga 40.40 15.03 12.33

Table 3
Average relative testing error rates (in %) on all data sets.

DDLCSS!LCSS
LCSS

2DDLCSS!LCSS
LCSS

2DDLCSS!DDLCSS
DDLCSS

Mean !33.21 !37.72 !9.72
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to show the interest of the approach, we propose to enhance classical sequence matching
techniques.
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Time Series for Word Spotting
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Abstract

As seen in the previous chapter time series signals can be extracted from almost every
aspect of human life and there are many applications of time series matching techniques
such as matching, retrieval, classification etc. Time series signal matching is a prevalent
area of research for the data mining community. One of interesting application is word
image matching. In this chapter, we will only focus on one specific research direction,
known as word spotting. Word spotting can be defined as "localization of interested word
in the dataset without actually interpreting the content". In this chapter, we explain the
process of representing word images as time series signal and then how the several sequence
matching techniques have been applied for spotting a word inside document image. Along
with it, we present an literature review of relevant word spotting techniques. We also
present a general word spotting architecture, used throughout this thesis. We also have
presented a fast word image retrieval technique using Kernelized Sensitive Hashing. Finally,
the descriptions of all the datasets, used in this thesis are given in this chapter.
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2.1. FROM TIME SERIES MATCHING TO WORD SPOTTING

2.1 From Time Series Matching to Word Spotting

In the previous chapter, we have seen that the time series data is available in almost
every aspect of human life. There are plenty of application domains of time series sig-
nal matching. Among many domain of applications, one useful application of time series
matching is image matching. Images is nothing but a 2D matrix, where the values in
the matrix can vary from 0-255. There have been hundreds of techniques available for
extracting significant features, which can represents the distinguishing characteristics of
images. Among these ones, some could be considered as a sequence 2D features. For
example, image representation technique mentioned in Section 1.3.1 of Chapter 1, where
structure of a leaf image is represented in terms of time series signal. Another way of image
representation could be image column based representation, where from each column of
image, we can extract features like average intensity of all pixels in the column, number
of foreground and background pixels in the column (on binarized images) etc. Then these
obtained sequences, considered from left to right for example, can be matched for finding
the similarity between two images, by using time series matching algorithms. This is typ-
ically, what can be done for searching words inside document images, without recognizing
them explicitly, i.e. word spotting.

2.1.1 Introduction to Word Spotting

Today world of digitization, has shown a stirring alternative to preserve and provide
an easy access to precious ancient manuscripts. High quality document digitization has
opened up a new way for historians and research scholars for easy and hassle free access
to these documents. Retrieving information from these invaluable knowledge resources are
highly useful for interpreting and understanding history of various domains and to know
cultural and societal heritage. Big software giants like Google and Yahoo have shown their
high interest to avail the scanned ancient printed and handwritten manuscripts through
their respective search engines. But only digitization can’t be much helpful and can’t meet
the user requirement completely, if these huge collection of manuscripts can’t be indexed
and made search-able. The performances of available OCR engines of different separate
scripts and languages for printed documents gives excellent recognition accuracy for the
case of contemporary good quality documents. But these OCR engines drastically fail to
perform in the case of old historical manuscripts. For the case of historical degraded cur-
sive handwritten off-line document images, particular domain specific success [Plamondon
and Srihari, 2000,Wang et al., 2014c,Pal et al., 2012, Senior and Robinson, 1998,Günter
and Bunke, 2005] has been achieved in the direction of character recognition and overall
transcription of the complete documents. But an expensive process of learning is attached
with most of these notable off-line handwriting recognition techniques. The "writing and
font style variability", "linguistics and script dependencies" and "document’s poor quality
caused by high degradations effects" are the critical bottlenecks of such systems. Moreover,
the process of manual or semi-automatic transcription of the entire text of a handwritten
or printed documents for searching any particular word is a tedious and laborious job. For
these reasons research has been emphasized on word spotting in handwritten manuscripts
and historical printed document images. Word spotting is a relatively new alternative for
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2.1. FROM TIME SERIES MATCHING TO WORD SPOTTING

information retrieval in ancient manuscripts. In the following section, an extensive liter-
ature reviews on word spotting is mentioned. It can be visible from these reviews that,
there are still some important unresolved problems in this domain. For example, spotting
of the words independent of the variation of scripts and languages has not been properly
addressed by the research community. Much work has not been done to propose a robust
word spotting technique for handling noise and degradation effects present in the histori-
cal document. In most of the languages, there exists several variation of some particular
words. For example, the French word cheval (horse) can have derivatives like "chevalerie",
"chevaux", "chevalier". In old French, other derivatives also exists due to lexical varia-
tions: "chevallerie","chevaus" ; and also the "v" is often printed as "u". So, a same word
can be written in different ways and retrieving similar words can be interest for the user.
Unfortunately, much research works has not been addressed in the direction of taking into
account the word derivatives.

2.1.2 Principles of Word Spotting

In this chapter, we focus on word spotting in handwritten and printed documents, such
as letters, memorandum, or manuscripts. Without transcribing the data, a user should be
able to search for any word, just like using a search engine and the result of such search
may look like as the one shown in Fig. 2.1. The spotting system just returns the likelihood
or similarity between query word and accuracies in the images. If the likelihood of a target
occurring in the image is above a given threshold, then this target is returned as a positive
match along with it’s position in the image. In case of multiple presence of target words are
considered, the word spotting system would return the ranks of these occurrences, based on
their likelihood/similarity measure with the query word. The following Fig. 2.1 illustrates
a layman view of desirable word spotting outcome of the system, where one positive match
in the image are marked by a rectangle box by considering 3 different query words and 3
different datasets respectively.

(a) Query word from GW
dataset

(b) Query word from Parzival
dataset

(c) Query word from CESR
dataset

(d) Sample page of GW dataset
(e) Sample page of Parzival
dataset

(f) Sample page of CESR
dataset

Figure 2.1: Example of word spotting results (marked by rectangle box) in document
images from 3 different datasets 1: (a) GW; (b) Parzival; (c) CESR. The spotted query
words are respectively shown in (a)(b)(c).

1For detailed description of the datasets, please see experimental evaluation section ***
For detailed description of Parzival dataset, please see: http://www.iam.unibe.ch/fki/databases/iam-
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Depending on the usability criterion, we can classify word spotting techniques in dif-
ferent ways. A popular layman way to differentiate the word spotting techniques can be
named as query-by-example and query-by-string. In the case of former category, a region
of a document is defined by the user and the system should return all regions containing
the similar text regions. In the later case, searching queries of arbitrary character combi-
nations independently of their occurrence in the dataset can be possible, where some out
of vocabulary words can also be searched.

2.2 Literature Review of Word Spotting Techniques

There have been numerous techniques proposed in the literature for word spotting.
As mentioned before that these techniques could be broadly classified in two categories:
i) Query by string and ii) query by example. The query-by-string approach requires a
model for every character and these methods are often achieved by learning-based ap-
proaches, while query-by-example is often achieved by learning free, image matching based
approaches. A well known drawback of learning based approaches is the requirement of
a set of transcribed text line images for training and it may be costly to obtain for some
particular historical datasets. Moreover, it should be done for all documents, considering
variability of writing/font styles. Thus, if neither the language nor the alphabet of a his-
torical document are known or even if writing style or font is different from the learned
patterns, learning based word spotting approaches performs poorly. In this kind of situa-
tions, learning free word spotting approaches might be the only option available. So, a fair
comparison is difficult to perform between learning based and learning free approaches as
each of them have their own set of advantages and disadvantages. In the case of learning
based approaches, ground truth (GT) is a mandatory requirement for training the system
whereas in the case of learning free approaches, GT is not required and it could be more in-
dependent of data, language and scripts. As a counterpart, learning based approaches have
most often high accuracy than learning free approaches and query-by-string based word
spotting can be adapted in this category of techniques whereas learning free approaches is
generally achieved by query-by-example based techniques.

2.2.1 Learning Free Word Spotting

In these categories of methods, a zone of interest (ZOI) is selected by the user, which
correspond to the query image. Then the image dataset is compared against this ZOI
patch and image regions similar to this ZOI are outputted by the system. These training
free approaches can be categorized into two main categories: i) word segmentation based;
ii) segmentation free approaches.

2.2.1.1 Segmentation Based Word Spotting

The pioneering work in word spotting was done by Manmatha et.al. [Manmatha, R.
Chengfeng and Riseman, 1996]. Their approach relies on the segmentation of images into

historical-document-database/parzival-database
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words (ZOI). In this approach, the word images are represented by a sequence of fea-
tures. A sliding window is used for extracting them features. This kind of word image
representations can be thought of as 2D signal, which can be matched using dynamic
programming [Rath and Manmatha, 2003], [Rath and Manmatha, 2006], [Meshesha and
Jawahar, 2008a], [Khurshid et al., 2012] based approaches. By maintaining almost the
similar word spotting architecture, various other dissimilarity measures can be visible in
literature e.g.: Scott and Longuet-Higgins distance measure [Manmatha, R. Chengfeng
and Riseman, 1996], Hausdorff distance of connected components [Lu and Tan, 2002], etc.
A pixel based comparison of the query and test images (word images extracted) can also
be performed and a global dissimilarity measure between the two pixel sets is evaluated
as an estimation of match between two images. A comparative experimental investiga-
tions of different image dissimilarity measure, such as shape context matching, XOR based
comparison, sum of squared distances (SSD) correlation, Euclidean Distance Mapping, is
given in [R. Manmatha, 2003]. The computational complexity and the discrimination be-
tween valid and invalid words are the shortcomings of these techniques, mentioned in [R.
Manmatha, 2003]. Another kind of dissimilarity measure is proposed in [Rothfeder et al.,
2003]. Here the sum of Euclidean distances of corresponding key points (corner features)
obtained from query and target images are used as the dissimilarity measure between two
word images. A similar architecture of word spotting technique is proposed in [Zhang et al.,
2003] [Srihari et al., 2006]. The similarity between target and query image (GSC features,
explained later) is calculated by using fast bit based operations for obtaining fast results.
In [Yao et al., 2015], the author introduced two directional DTW and demonstrates that
the use of two-directional DTW matching method for handwritten word spotting performs
better than conventional DTW based word spotting techniques. A sequence of HOG fea-
tures along rows and columns are calculated by extracting HOG descriptors from each cell
of the normalized images and then these features are used for matching by two directional
DTW. Since the quadratic time complexity of DTW is highly expensive for large scale
word image matching, authors in [Nagendar and Jawahar, 2015], proposed a technique
to approximate DTW distance as a sum of multiple weighted Eulidean distances for fast
retrieval of word images. By learning a small set of global principal alignments from the
training data and avoiding the computation of alignments for query images, this technique
achieve 40 times speedup over classical DTW based approaches and shows similar results
as classical DTW (bit lower).

As discussed in the above paragraph, many distance matching techniques have been
explored in the literature for word spotting. Among all these mentioned distance match-
ing approaches, classical DTW performs better than others. Although there are several
other improved versions of classical DTW, which have shown better performance in other
domains, but never been explored for the problem of word spotting. In Chapter 3, we will
explore many of such improved DTW techniques for word spotting.

There have been many other researchers, who has worked for finding better set of fea-
tures for representing word images, which can provide more meaningful and distinguishable
information for word spotting. In [Zhang et al., 2003] [Srihari et al., 2006], gradient based
binary features (GSC features) are calculated from query and target images and are used
for word image matching in handwritten documents. The gradient, structural and con-
cavity features captures multi-scale characteristics embedded in the image. The authors
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of [Leydier et al., 2007], proposed an elastic matching technique for word spotting, by com-
paring pixel-wise, gradient based differential features of query and target images, in order
to match only the informative parts of the words. In [Anurag Bhardwaj, Damien Jose,
2008], the authors have proposed a technique to calculate moments based, more complex
and holistic features from the foreground pixels of the segmented word images. A set of fea-
ture vectors are obtained by using discrete cosine transform of the contour [Adamek et al.,
2006] and these features are used for word image matching. Utilization of Gabor based
features for word spotting was also investigated in [Cao and Govindaraju, 2007]. A sliding
window of one pixel width is used to calculate several column based features from bina-
rized images. These sort of features have been highly used by several researchers [Rath and
Manmatha, 2003], [Rath and Manmatha, 2006], [Meshesha and Jawahar, 2008a], [Khur-
shid et al., 2012]. A sliding window based HOG features and block based HOG features
were used by [Terasawa and Tanaka, 2009] and [Yao et al., 2015] respectively. Among all
the mentioned features, HOG features shows better performance compared to others but
column based features has also performed well. Although HOG based features slightly
outperforms the column based features but the column based features have been widely
used in literature due to their subsequent properties : i) easy and fast to compute; ii) low
dimensionality; iii) well experimented and explored before. Moreover, the complexity in
computation and high dimensionality are critical bottlenecks of HOG based word spotting
systems. A methodology for using sequential data in conjunction with the holistic approach
for word spotting in speech recognition domain is performed in [Keshet et al., 2009], where
a sequence is transformed into a vector space and classified by using kernel machines. Al-
though, the usage of different sets of features has shown some stirring improvements over
earlier set of techniques, but the time required to calculate these new sets of features, along
with the necessity of perfect word segmentation remains drawback of these methods. In
the following section, we explain some of the techniques which uses different word spotting
architecture than the ones based on feature extraction process.

A shape-based word image matching scheme, represented by local contour features is
presented in [Giotis et al., 2015]. The proposed technique is accomplished in two steps.
The query image is firstly aligned with the test image according to a similarity measure
defined on their descriptors and then the aligned images are matched through a deformable
non rigid point matching algorithm. One of the crucial drawback of this technique is it’s
high dependency on outcome of binarization process as an intermediate step. An attribute
based approach that leads to a low dimensional, fixed length representation of the word
images that is fast to compute and, especially, fast to compare is proposed in [Almazan
et al., 2013]. A calibration technique is also proposed to correct the attributes scores based
on canonical correlation analysis that greatly improves the results.

A shape coding based technique for word spotting is described in [Lu et al., 2008]
[Tarafdar et al., 2010]. In this category of technique, each word image is denoted by a
word shape code. By utilizing topological and morphological information, interest points
are selected and an adapted version of shape context (SC) descriptor is employed on the
handwritten texts. The final similarity measure is calculated by a weighted mixture of
the SC cost, loop difference, stroke analysis and texture comparison with different weights.
Based on the topological and morphological information of hand writing, a skeleton based
graph matching technique is used in [Wang et al., 2014a], for performing word spotting in
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handwritten historical documents. This structural representation is suitable for inherent
deformations of handwriting. Dependency on perfectly segmented words and well quality
binarization output is critical requirement of this technique. Another similar approach is
proposed in [Riba and Llad, 2015]. Graphemes are extracted from shape convexities and
are used for word spotting by associated them to graph nodes. Graph based word matching
is defined by bipartite-graph matching algorithm.

A query by string paradigm for word spotting is proposed in [Aldavert et al., 2013]. In
this work, a character n-grams based textual and a bag of visual words based representa-
tions are merged together to retrieve the query word images. In another work mentioned
in [Roy et al., 2013], a bag of character n-gram based, recognition free image retrieval tech-
nique is proposed. This technique is able to search at sub word level and out of vocabulary
words. This method inherently depends on generating a bag of n-grams, which is then
used for off-line indexation and retrieval. This is a impediments of n-grams based word
spotting approaches.

Perfect segmentation of words is a critical bottle neck of above mentioned systems.
In the literature, there have been some attempt to spot words on segmented lines to
avoid such problems. Depending on the documents quality, line segmentation could be
comparatively easier than word segmentation. In such cases, a popular variant of DTW
named as continuous dynamic programming (CDP) [Oka, 1998] is used for calculating the
dissimilarity measures of image patches, hence the partial sequence matching property of
CDP [Terasawa and Tanaka, 2009,Mondal et al., 2014] is utilized in such cases. In [Kolcz
et al., 2000] also, a DTW based dissimilarity measurement techniques is utilized for word
spotting on segmented lines.

Necessity of proper word segmentation (or line segmentation in some cases) and high
computational complexities are the critical bottle-necks of most of the techniques in this
category. Moreover these techniques are prone to usual degradation noise of historical
document images and always require at-least one occurrence of query image in the dataset.
To overcome the problem of segmentation, segmentation free approaches are proposed in
the literature.

2.2.1.2 Segmentation Free Word Spotting

In this category the user defines a particular region of text image and the system is
able to spot the similar regions in the completely unsegmented document images [Anurag
Bhardwaj, Damien Jose, 2008]. A common approach for segmentation free word spot-
ting is to consider the task as an image retrieval tasks for an input shape representing
the query image as a part of full image [Moghaddam and Cheriet, 2009], [Leydier et al.,
2005], [Gatos and Pratikakis, 2009], [Almazán et al., 2012]. HOG descriptors based slid-
ing window protocol is used to locate the document regions that are most similar to the
query. Another segmentation and classification free word spotting approach is presented
in [Saykol et al., 2004] in which, a codebook of shapes is used to create a compressed version
of each document. A word search is performed by using the stored shape codebook entries.
In [Vasilopoulos and Kavallieratou, 2013], the queries are treated as compact shapes and
by using image processing techniques, the query image is located in the document images.
There have been also several notable work using Bag-of-Features paradigm [Fernandez-
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Mota et al., 2014]. But recently, there is new trend of automatically learning descriptors
from data. In [Sudholt et al., 2015], the authors has proposed a descriptor learning based
pipeline for word spotting. Evaluation results demonstrates that word spotting results
can effectively be improved by learning specialized local image descriptors. Currently this
approach is been applied A heat kernel signature (HKS) based segmentation free word
spotting technique is proposed in [Zhang and Tan, 2013]. By detecting SIFT based key
points on the document pages and the query image, HKS descriptors are extracted from
local patch centered at key points. Then a searching method is proposed to locate the
local zones which contains enough matching key points corresponding to the query image.
The performance of intrinsically variable hand writing, highly depends on correct detection
of key points and corresponding features. The influence of key points selections and the
associated features on the performance of word spotting process was also experimented
in [Fernandez-Mota et al., 2014]. A bag of visual words (BOVW) [Dovgalecs et al., 2013]
based approach is used to identify the zones of the image that share common characteristics
with the query word. Then Longest Weighted Profile (LWP) based zone filtering technique
is used to identify the location of query words in the document image. A patch based
frame work, where local patches are described by a bag-of-visual-words model powered
by SIFT descriptors is proposed in [Rusiñol et al., 2011], [Rusiñol et al., 2015]. By pro-
jecting the patch descriptors to a topic space with the latent semantic analysis technique
and compressing the descriptors with the product quantization method, the approach is
able to efficiently index the document information both in terms of memory and time.
Another technique proposed in [Rothacker et al., 2013], where bag-of-visual-words based
features [Rusiñol et al., 2015] are used for modeling a HMMs, for performing segmentation
free word spotting. The discrete nature of this model enables to estimate a query model
with only a single example of the query provided by the user. This makes the method very
flexible with respect to the availability of training data. Segmentation free approaches are
able to overcome the curse of segmentation problems but they have a comparative low ac-
curacy (in comparison with segmentation based and learning based approaches) and high
computational burdens considering full document image regions as an apparent candidate
for matching.

2.2.2 Learning Based Word Spotting

The word spotting techniques in this category can be broadly classified into two sections:
i) Hidden Markov Models based word spotting. ii) Bidirectional Long Short Term Memory
based word spotting. There are only few other word spotting approaches, mentioned
in [Kessentini and Paquet, 2015] [Almazan et al., 2013]. In the following section, we would
focus mainly on these two main category of learning based word spotting techniques.

2.2.2.1 Hidden Markov Models based word spotting

The very first learning based approach for word spotting on poorly printed documents,
was performed by Kuo et. al. [Agazzi and Kuo, 1994]. In their method, an initial lay-
out analysis step is devoted to perform word segmentation from printed and handwritten
document images. To represent the actual single word and all other segmented extraneous
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words respectively, two statistical model named as Pseudo 2-D Hidden Markov Models
(HMM) were used. Dynamic programming is then used for matching an unknown single
input word with the help of these two 2-D HMM based models and finally maximum like-
lihood measure is calculated for correctly spotting the query word. The requirement for
individual word images, segmented from the text region of the scanned document image
is a primary bottleneck in the above mentioned word segmentation based word spotting
approach.

To avoid this problem, line segmentation based word spotting approaches were intro-
duced. By modeling imperfect word segmentation as probabilities and integrating the
word segmentation probabilities into the word spotting algorithm, the method described
in [Cao et al., 2009] proposes a generalized framework for word spotting. The word recogni-
tion scores are also converted into probabilities that are compatible with the probabilistic
word spotting model. Word spotting based on HMM have been very popular in recent
days [Lavrenko et al., 2004], [Chan et al., 2006], [Fischer et al., 2010a]. But an important
drawback of these approaches is the large computational cost of the word specific HMM
Viterbi decoding process, needed to obtain the confidence scores of each words to be spot-
ted. The research work mentioned in [Toselli and Vidal, 2013], proposes a technique to
calculate such confidence scores, directly from character lattices produced during a single
Viterbi decoding process using only "filler" model. No explicit word-specific decoding is
employed. Anyway, Viterbi decoding process remains computationally expensive and the
learning needs ample amount of training data. The other notable work on HMM based
word spotting was proposed in [Rodriguez and Perronnin, 2008]. In this work, the authors
use unsupervised adaptation of whole word HMM to a specific writer. The usage of Fisher
kernel of HMM for estimating a good confidence measure was explored by Perronnin and
Rodriguez-Serron [Perronnin and Rodriguez-Serrano, 2009]. Given an word image and a
keyword generative model, a vector can be generated which can describe how the param-
eters of keyword model should be modified to best fit the word image. The authors claim
that their proposed system is 15 times faster than the baseline approach. A generalized
HMM model for word spotting was proposed by Edwards et.al. in [Edwards, J. Teh, Y.
W. Forsyth, D. Bock, R. Maire, M. Vesom, 2004]. In this research work, the author em-
ploys more than one emission in each hidden state and the results are obtained by using
unigram, bigram, trigram models. In [Fischer et al., 2013], the learning based, lexicon free
method with character n-gram language models (by using character HMM), has shown a
high performance for word spotting. A document indexing and word spotting technique
is performed by using semi markov conditional random fields (semi-CRF). This model can
provide a framework for fusing the information of different contexts. For fast retrieval
and to save storage space, the lattice is first pruned by forward and backward pruning
approach. On the reduced lattice, the character similarity scores based on the semi-CRF
model is estimated. A promising method for word spotting was also proposed in [Howe,
2013]. By treating the queries as compact shapes, this technique can infer a generative
word appearance model from a single instance of query word. Later, by using this model,
the system can retrieve similar words from arbitrary documents. The advantage of this
system is that it requires minimal level of initial training.

Holistic word features in conjunction with two probabilistic, statistical, annotation
model is used for retrieval of query images in large collections of handwritten manuscripts
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[Rath et al., 2004]. Both of the model uses a set of transcribed page images to learn
a joint probability distribution between features computed from word images and their
transcriptions. In another similar probabilistic model based technique [Kessentini et al.,
2013], the features extracted from segmented lines are used for training new filler based
HMM model, which allows to speedup the decoding process.

2.2.2.2 Bidirectional Long Short Term Memory based word spotting

Along with the development of HMM based word spotting techniques, neural net-
work based word spotting techniques has been attracting notable interest of the research
community. Especially, Bidirectional Long Short Term Memory (BLSTM) based neural
network [Fernández et al., 2007] [Wollmer et al., 2009] has been successfully used for word
spotting. This learning based technique has a high similarity with the method mentioned
in [Frinken et al., 2012], but the former methods primarily deals with word spotting in
speech. Moreover, the designed architecture of the neural network symbolizes one node at
the output layer as one word and it get triggered when the word occurs in the input data.
Therefore the number of words to be spotted are limited as the particular word has to be
known beforehand and the particular word must occur in training. But the later method,
mentioned in [Frinken et al., 2012], employs a template free word spotting technique. The
word spotting is done by using a modification of the Connectionist Temporal Classification
(CTC) Token Passing algorithm in conjunction with a recurrent neural network.

Although learning based techniques shows comparatively better accuracy than learn-
ing free approaches, but the necessity of training for every different types of script, glyphs
remains a big bottle-neck of learning based techniques. Unfortunately these HMM and neu-
ral network based techniques requires sufficient amounts of training data and considerable
training time to perform, which could be difficult to obtain in some conditions.

2.2.3 Summary of Word Spotting Techniques

In the following Table.2.1, we tried to categorize the various approaches for word spot-
ting. Learning is denoted as column wise and levels of Segmentation is considered row
wise ("No Segmentation", "Line based segmentation", "Word based segmentation", "Char-
acter based segmentation"). As mentioned earlier, our contributions belong to the category
of learning free word spotting based on segmented lines or improperly segmented words.
Since our contributions are extensions of sequence matching (DTW, MVM etc.) tech-
niques, their use for word spotting is based on a classical framework, similar to the one
used previously [Rath and Manmatha, 2003], [Rath and Manmatha, 2006], [Meshesha and
Jawahar, 2008a].

2.3 General Architecture for Sequence Matching Based Word
Spotting

In the following section, we introduce our word spotting architecture. This is a general
and commonly used word spotting architecture, which has been used by several other
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Table 2.1: The grouping of state of the art techniques, available in literature.

Without Learning With Learning
Segmentation

Free
[Anurag Bhardwaj, Damien Jose,

2008] [Moghaddam and Cheriet, 2009],
[Leydier et al., 2005], [Gatos and
Pratikakis, 2009], [Almazán et al.,
2012] [Saykol et al., 2004] [Vasilopou-
los and Kavallieratou, 2013] [Zhang
and Tan, 2013] [Dovgalecs et al., 2013]
[Rusiñol et al., 2011], [Rusiñol et al.,
2015] [Rusiñol et al., 2015]

[Rothacker et al., 2013]

Line
Segmentation

Based

[Terasawa and Tanaka, 2009,Mondal
et al., ]

[Agazzi and Kuo, 1994] [Cao et al.,
2009] [Lavrenko et al., 2004] [Chan
et al., 2006], [Fischer et al., 2010a]
[Toselli and Vidal, 2013] [Perronnin
and Rodriguez-Serrano, 2009] [Agazzi
and Kuo, 1994] [Edwards, J. Teh, Y.
W. Forsyth, D. Bock, R. Maire, M. Ve-
som, 2004] [Rodriguez and Perronnin,
2008] [Fischer et al., 2013] [Howe, 2013]
[Rath et al., 2004] [Kessentini et al.,
2013] [Fernández et al., 2007] [Wollmer
et al., 2009] [Frinken et al., 2012]

Word
Segmentation

Based

[Manmatha, R. Chengfeng and
Riseman, 1996] [Rath and Man-
matha, 2003], [Rath and Manmatha,
2006], [Meshesha and Jawahar, 2008a],
[Khurshid et al., 2012] [Lu and Tan,
2002] [R. Manmatha, 2003] [Rothfeder
et al., 2003] [Zhang et al., 2003]
[Srihari et al., 2006] [Leydier et al.,
2007] [Anurag Bhardwaj, Damien
Jose, 2008] [Adamek et al., 2006] [Cao
and Govindaraju, 2007] [Keshet et al.,
2009] [Almazan et al., 2013] [Lu et al.,
2008] [Tarafdar et al., 2010] [Wang
et al., 2014a] [Aldavert et al., 2013]
[Kolcz et al., 2000]

Character
Segmentation

Based

[Roy et al., 2013]

researchers [Rath and Manmatha, 2003], [Rath and Manmatha, 2006], [Meshesha and
Jawahar, 2008a], [Khurshid et al., 2012] [R. Manmatha, 2003] [Terasawa and Tanaka,
2009], [Mondal et al., 2014]. Most of the sequence matching techniques, introduced later,
are experimented based on this following word spotting architecture. For evaluating the
performance of each individual sequence matching technique, we only change the matching
techniques in the system diagram/architecture shown in following Fig. 2.2. In this section,
our complete word spotting framework is briefly explained in stepwise manner. It is similar
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Figure 2.2: The block diagram of word spotting system

to the one that has been used by several researchers [Rath and Manmatha, 2003,Rath and
Manmatha, 2006,Khurshid et al., 2012,Meshesha and Jawahar, 2008a].

2.3.1 Image Processing and Segmentation

Firstly, we need to preprocess each of the scanned document pages. As the performance
of popular binarization techniques (e.g Otsu’s [Nobuyuki, 1979] technique) is not good
enough for old historical manuscripts, we decided to use the adaptive binarization technique
proposed in [Gatos et al., 2006]. Due to improper scanning, document images might be
framed with unwanted text areas of the neighboring pages. So, after document binarization,
we apply the technique, described in [Stamatopoulos et al., 2010], for unwanted text region
removal and for obtaining proper text boundary.

After preprocessing and extraction of textual regions, the regions have to be segmented
either into lines or pieces of lines, up to words or part of words. Here we named this textual
elements as "pseudo word". Although this process of word segmentation technique is
a basic one and it gives many segmentation errors (mainly under segmentation) but our
proposed matching technique (discussed later in Section ***) is designed for handling these
kinds of problems. Depending on the quality and level of difficulties to segment documents,
either line or word extraction can be used (even a mixed of both). It is noteworthy to
mention that for our experimentations, we used line segmentation for some specific datasets
and word segmentation information for other datasets. One advantage in the case of line
segmentation is that, it can be possible to spot hyphenated words spanned into two lines,
simply by concatenating them. The system explained here, is mainly focused to describe
our adapted pseudo word segmentation technique for printed historical documents.

Word segmentation could be obtained by using basic Run Length Smoothing Algorithm
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(RLSA) based segmentation techniques. This one can provide good results for high qual-
ity printed documents, but the results could be poor when inter-word spaces are variable
which is often the case in handwritten documents as well as in historical printed documents.
Horizontal Run Length Smoothing Algorithm (H-RLSA) with adaptive threshold [Nikolaou
et al., 2010]. This threshold actually defines the average inter character gap in a word.
This threshold inherently depends on the considered dataset. To obtain it automatically,
a preliminary text line segmentation is performed on the document pages. Proper segmen-
tation of all the text lines is not at all required in this case. From each page, we need
to have only some prominent segmented text lines, which can help us to understand the
inter characters gap in words and the inter words gap in a text line. So, basic text line
segmentation algorithm (based on projection profile [Nikolaou et al., 2010]) is used here.
As the line segmentation technique is not robust enough, only coherent segmented lines
(based on the height of segmented text lines) are taken into account. After finding the
most prominent text lines, the average inter word’s character gap is obtained by finding
gap histogram between connected components [Haralick and Shapiro, 1992] (CCL) from
each line. Hence the inter character gaps present in maximum number of component pairs
is calculated and average distances between the characters present in a word are obtained.
After that (HRLSA) is performed on the image by using this average character gaps as the
threshold. As a result, all characters belonging to a word are merged so that the words
boundaries can be recognized for segmentation.

2.3.2 Feature Extraction

After segmenting the document image pages into pseudo words or lines, the next task is
to extract the useful features from these ones. Features are extracted from gray scale and
also binary normalized images. All the pseudo word images are normalized by equalizing
height of all the images. In the following section, we describe two different category of
features, namely column based features and histogram of gradient based features that are
used, throughout our experimental process. Depending on the suitability and robustness
of the features, these ones are applied for experimenting each individual datasets.

2.3.2.1 Column Based Feature Extraction

A set of statistical column based features, which have been used previously for handwrit-
ing recognition is broadly described in [Marti and Bunke, 2001]. A subset of these features
have been used by several researchers for word spotting [Rath and Manmatha, 2003], [Rath
and Manmatha, 2006], [Khurshid et al., 2012], [Frinken et al., 2012], [Rodríguez-Serrano
and Perronnin, 2009], [Fischer et al., 2012]. Although these features can be outperformed
in terms of accuracy by more complex features, e.g. gradient based features [Rodríguez-
Serrano and Perronnin, 2009], graph similarity features [Fischer et al., 2010b] etc., due
to their less computational cost they remains quite interesting. Here, we have chosen 8
features, F1, F2, . . . , F8 to describe each pixels column. Thus, for an image of N pixel’s
width, a sequence (size N) of 8 dimensional feature vectors are obtained by moving from
the left to right direction, over the segmented pseudo word image. The description of the
features is given below in Table 2.2. Among these features, the features F1 − F6 have

45



2.3. GENERAL ARCHITECTURE FOR SEQUENCE MATCHING BASED WORD
SPOTTING

been used several times in literature [Rath and Manmatha, 2003], [Rath and Manmatha,
2006], [Khurshid et al., 2012], [Frinken et al., 2012], [Rodríguez-Serrano and Perronnin,
2009], [Fischer et al., 2012], but the features F7 and F8 are proposed in this work.

The feature F7, corresponds to the center of gravity of foreground pixels inside a column.
In the corresponding equation Table.2.2, wb denotes the binarized version of the word image
and Y represents row’s coordinates. It is note worthy to mention that, the features for the
columns having no foreground pixels are calculated by nearest neighbor interpolation, with
the help of the neighboring columns having foreground pixels. The feature F8, is calculated
by using these center of gravity location, obtained from F7: the number of transition, from
foreground to background (1 to 0) or from background to foreground (0 to 1) at these
calculated centroid location of each pixels. All these features, are computed and stored
off-line for faster computation.

Table 2.2: Extracted features from the word images, considering an image with N columns
and M rows

Sr. No Feature set description
F1. Projection Profile of foreground pixels in each column
F2. Background-to-ink transition in pixel column
F3. Upper Profile of foreground pixels in each column
F4. Lower Profile of foreground pixels in each column
F5. Distance between upper and lower Profile
F6. Number of foreground pixels in pixel column
F7. Center of gravity (C.G.) of the column obtained from the foreground pixels (1 ≤ n ≤ N)

F7(n) =

{
[1ρ
∑M

m=1m if wb(m,n) = 1]; ρ 6= 0; ρ = No. of foreground pixels at nthcolumn;

t Obtained by interpolation; ρ = 0

F8. Transition at C.G. obtained from F7

F8(n) =





1 wb(F7(n), n) = 0; and wb(F7(n− 1), n) = 1 or
wb(F7(n), n) = 1;wb(F7(n− 1), n) = 0

t Obtained by interpolation

2.3.2.2 Slit Style HOG Based Feature Extraction

For the task of word spotting, a slit style HOG (SSHOG) [Dalal and Triggs, 2005] based
feature extraction technique can be used. This slit style HOG (SSHOG) is a modified
version of HOG, to make it suitable for word spotting applications.

A fixed sized slit window is slided over the image in horizontal direction for extracting
features from each slit. In the following Fig. 2.3a, the demonstration of slit style feature
extraction process is described. HOG computes a histogram of gradient orientations in a
certain local region. HOG features are computed in a rigid rectangular window without
scale/orientation normalization and it calculates normalized histograms in overlapping local
blocks. For calculating the HOG descriptors, we need to divide the image into smaller
rectangular regions (called cells) along horizontal and vertical direction. Let’s say the whole
image is divided into H ×W cells. Then the number of bins into which the weighted votes
of the gradient vectors should be accumulated is decided. Let’s consider here, ξ denotes
the number of orientation bins. Thus, from H × W cells, we could obtain a histogram
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Figure 2.3: (a) Feature extraction using slit style sliding window. (b) Block normalization
technique for SSHOG, where S1 is a slit and b11, b12 & b13 are blocks that overlaps.

with HWξ bins. After obtaining the histogram bins, a block normalization is performed.
A block is defined as a group of h × w cells. So, from each block, we can generate hwξ
dimensional vectors by concatenating the histogram components of each cell. A block can
slide in vertical and horizontal directions. If we assume that a block slides h − 1 cells in
vertical and w−1 cells in horizontal directions, then there are total (H−h+1×W −w+1)
unique block exists. The HOG descriptor of considered image portion, is a concatenation
of the normalized block descriptors, obtained from this image region. Consequently, HOG
descriptor has (H − h + 1)(W − w + 1)hwξ) dimensionality. It can be understood that,
this is a redundant expression in a sense that HWξ components in the original histogram
composes a vector with (H − h + 1)(W − w + 1)hwξ) dimensions, but this is a inherent
characteristics of HOG descriptor.

In order to make it suitable for word spotting application, some modification is made
to the HOG descriptor. Our window image is a narrow rectangle, where each sliding
block, which slides over each slit is of same width as the width of the block. The horizontal
overlapping of the original HOG could be well realized by the sliding window and sequential
representation of vectors. The representation and relationship between slit, blocks and cells
are shown in following Fig. 2.3b. The figure shows, 3 blocks as b11, b12, b13 with each block
composed of 4 cells (2 × 2). Hence, the dimensionality of slit style HOG feature becomes
3×4×π. For our experiment, we used signed gradient instead of unsigned gradient for the
orientation binning as signed gradient shows better results as the portions of characters in
the image is brighter than background regions.
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2.4 Fast Word Image Retrieval Technique Based on Kernel-
ized Sensitive Hashing (KLSH)

In the previous sections (refer to Section 2.2), we have seen several word spotting or
word image matching systems. But the domain of fast word image retrieval has been less
explored in literature. The generalized approach for image matching is computationally
expensive, especially if matching is to be done over a very large amount of document
images. In this research work, we performed a preliminary investigation of hashing with
word images. The following mentioned work is an elementary level of contribution, where
we analyze the performance of one well known hashing technique (Kernelized Sensitive
Hashing (KLSH) [Kulis and Grauman, 2009]) by using a set of holistic features.

In this work an efficient approach to index and retrieve word images for large document
image database is stated. For the word indexing and retrieval, the most basic and essential
task in image search is the "nearest neighbor" technique: given a query image, the task is to
accurately search examples, which are most similar to it. In approximate similarity search
technique (like LSH [Indyk and Motwani, 1998] [Charikar, 2002]) for high dimensional
input data, accuracy is sacrificed to some extent for allowing fast retrieval. The basic idea
of LSH is to calculate a randomized hash function that guarantees a high probability of
collision for similar examples. There are certain other works to show how to form low
dimensional binary embedding for capturing more expensive distance function [Torralba
et al., 2008] [Weiss et al., 2009]. The existing techniques generally assume that the data
to be hashed, comes from a multi-dimensional vector space and also requires underlying
embedding of the data to be explicitly known and computable. Like LSH, that relies on
random projection of input vectors.

Kernelized locality sensitive hashing [Kulis and Grauman, 2009] is used to quickly
retrieve word images, based on the extracted word image features. The high dimen-
sional features are extracted and embedded into a low dimensional hamming space, so
that items can be searched efficiently and quickly. Existing methods are not useful for
high dimensional kernelized data, when the underlying kernel for feature embedding is
unknown or very expensive to know. The main technical contribution of KLSH is to
generalize LSH for accommodating arbitrary kernel functions for unknown or computa-
tionally expensive feature space embedding, thereby offering sub-linear time similarity
search. The method is not dependent on data distribution or input, so it has wide spread
applicability for many successful image-based kernels, having unknown or incomputable
feature space embedding. The problem demonstrated in KLSH is as follows: given a
kernel function K(xi,xj) = φ(xi)T ,xj)T and database of n objects, how can we quickly
find the most similar items to a query object q in terms of kernel function, that is
arg maxi K(qi,xi); i = 1, 2, ...n. Like standard LSH, hash functions of KLSH involve com-
puting random projections; however, unlike standard LSH, these random projections are
constructed using only the kernel function and a sparse set of examples from the database
itself. In this section, we investigate how KLSH can be used to address some of the issues
involved in effective and efficient retrieval of word images. We demonstrate that efficient
retrieval could be done on a collection of George Washington (GW) database (explained
later in Section 2.5.1) using the proposed technique [Mondal et al., 2009].
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2.4.1 Feature Extraction for Hashing

Following features are extracted as the representation of word images. Please note that
these features are not optimized ones as we have not experimented or explored other kinds
of features. Based on prior knowledge in the domain of document image processing and
motivation from state-of-the-art word image matching techniques [Cao and Govindaraju,
2007] [Manthalkar et al., 2003], [Marti and Bunke, 2001], [Rath and Manmatha, 2006],
[Frinken et al., 2012], we decided to use these features for having a preliminary experience
of hashing for word images.

2.4.1.1 Gabor Features

In order to get inherent information of the image, Gabor features are extracted from
height normalized word images. Gabor kernel [Wang et al., 2002] is suitable for rotation
and scale invariant feature extraction.
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Where, σu = 1
2πσx

and σv = 1
2πσy

and F specifies the central frequency of interest.
For localized frequency analysis, it is desirable to have a Gaussian envelope, whose width
adjusts with the frequency of the complex sinusoids. We have considered a class of self-
similar functions, referred as Gabor wavelets [Cao and Govindaraju, 2007] [Manthalkar
et al., 2003]. Gabor wavelet derived from Eqn 2.1a is defined as follows:

g(m,n)(x, y) = a−mg(x′, y′)

(2.2a)
x′ = a−m(x.cosθ+y.sinθ)

(2.2b)
y′ = a−m(−x.sinθ+y.cosθ)

(2.2c)

Where, θ = nπ
K and K is the total number of orientations. The scale factor a−m in

Eqn 2.2a is meant to ensure that the energy is independent on m.

E(m,n) =

∫ +∞

−∞

∫ +∞

−∞
g(m,n)(|x− y|)2dxdy (2.3)

This ensures that all filters in the set have the same energy. The non-orthogonality of
Gabor wavelets implies that there is redundant information in the filtered images, and the
following strategy is used to reduce this redundancy. Let Uh and Ul denote the lower and
upper centre frequencies of interest. Also let K be the number of orientations and S be
the number of scales in the multi-resolution decomposition. Then the design strategy is to
ensure that the half peak magnitude cross-sections of the filter responses in the frequency
spectrum touch each other. This results in the following formulas for computing the filter
parameters a, σx and σy (and thus σu and σv).

49



2.4. FAST WORD IMAGE RETRIEVAL TECHNIQUE BASED ON KERNELIZED
SENSITIVE HASHING (KLSH)

a = (
Uh
Ul

)
1

S−1 ;σu =
(a− 1)Ul

(a− 1)
√

2 log 2

σv = tan(
π

2K
)[Ul −

2 log 2σ2u
ul

][2 log 2− (2 log 2)2σ2u
U2
l

]2
(2.4)

In order to make the Gabor filter sensitive to the strokes of the characters, the central
frequency of interest should be set to 1

2W , where W is the stroke width. This is because
the stroke width is the half-period of the signal of interest, so the period is 2W , and the
frequency is 1

2W . In GW dataset, stroke width (manually calculated) varies from 12 to 15
pixels, which corresponds to frequencies of 0.0625 and 0.0333, respectively. The upper and
lower frequencies of interest are Uh = 0.0625 and Ul = 0.0333, so the range of stroke width
can be completely covered. In this experiment, 5 frequencies (0.0625, 0.0125, 0.25, 0.5, 1.0)
and 7 orientations 0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦ are considered and both odd & even
Gabor wavelets are considered. We have taken the mean and standard deviation of the
image generated by applying Gabor wavelets of different orientation, scale and frequency.
Hence a total of 280 features (2×5×7×2×2 = 280) are extracted. Experiments conducted
indicate a better performance using 2-scale Gabor wavelet over single scale Gabor filter.

Table 2.3: Extracted column based features from the word images.

Sr. No Feature set description
F9. Standard Deviation of the intensities of pixels in a column
F10. Skewness of the intensities of pixels in a column
F11. Kurtosis of the intensities of pixels in a column
F12. 0th order moment of the intensities of pixels in a column
F13. 1st order moment of the intensities of pixels in a column
F14. Central moments of the intensities of pixels in a column

2.4.1.2 Image Column Based Features for Hashing

Along with the column based features mentioned in Table 2.2, we use some more column
based features (see Table 2.3). After calculating total 14 column based features from each
column, the mean and standard deviation of each feature are calculated for the entire
columns present in the word image. So, we will get 28(14× 2) more features and in total
310(280+28) features are obtained for each image. In the next section, it is described that
how these features are used for generating hash table for fast retrieval of word images.

2.4.2 Kernelized Locality Sensitive Hashing (KLSH)

In this section, we give a brief overview of KLSH. Let X ∈ Rd×n be the collection data
points to be searched and the query is represented by q ∈ Rd. To efficiently search k nearest
neighbors, LSH projects each data points into a low dimensional binary space, referred as
hash key. This hash keys are constructed by applying b binary hash functions h1, .., hb to
the data points in X. KLSH generalizes LSH by introducing kernel function κ(xi,xj) for
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mapping a data point xi to a functional space through a nonlinear feature mapping φ(xi)
that satisfy the condition κ(xi,xj) = φT (xi)φ(xj). To build a hash function, KLSH first
randomly selects a subset of p data points from X, denoted as S = {xs1, ....,xsp} and forms a
kernel matrix K over the sampled data points; it then generates b random vector e1S , ...., e

b
S

and computes a hashing function for each random vector ekS(1 ≤ k ≤ b) as

hk(φ(x)) = sign(

p∑

j=1

wkj κ(x,xsj)) (2.5)

where wk = (wk1 , ..., w
k
p)T is given by wk = K−

1
2
ekS . The key steps of KLSH is outlined in

Algorithm 1, where b is a critical parameter that determines the length of hash key to be
constructed in KLSH.

Algorithm 1: KLSH Algorithm

Input: {xi|i = 1, ..., n},xi ∈ Rd(image database, containing multiple images)
Input: b (length of hash key)
Input: κ(., .)(the kernel function)
Output: H = {hk|k = 1, ..., b} (a set of b hash functions)

1 randomly choose p data points {S = xsj |j = 1, ..., p};
2 K = [κ(xsi ,x

s
j)]p×p

3 for k = 1,...,b do
4 form ekS : select t indices at random from[1, ..., p]

5 form wk = K−1/2ekS

6 generate the hash function by: hk(φ(x)) = sign(
p∑
j=1

wkj κ(x,xs
j ))

7 return bool

2.4.3 Results

By considering different threshold values of nearest neighbors, the capability of indexing
and retrieval of the dataset is demonstrated in Fig. 2.5a. In Fig. 2.4, we present some
qualitative query images and their corresponding retrieved images. The method is tested
with randomly chosen 30 images (which were not used for training) from database and
matching result is obtained by averaging the accuracy of these selected 30 query images.
This process of testing the robustness of the system has been repeated several times and
results are obtained as given in Fig.2.5. For our experimentation, b = 300 and t = 30
(these values are experimentally obtained) are used.

Concerning the quantitative evaluation of GW dataset, the accuracy of the system
increases exponentially with the increase of NN threshold, which is quite obvious but the
notable point here is that almost 50% retrieval accuracy can be obtained by considering
NN equal to only 20% of the total number of elements without doing any sort of pre-
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Fig 2: Some of the query image and their similar images retrieved 

of the total number of elements without doing any sort of  
 

 

Query Image Retrieved Image 
  

pre-processing or pruning of word images. As shown in Fig. 1(a) 
the accuracy of the system is far from being high but the 
advantage of this method is that the searching/retrieval time is 
comparatively much less than   any other retrieval techniques 
mentioned in literature. So this can be taken as a trade-off 
between the accuracy and speed. The experiments were 
conducted on data sets of increasing size (by 200 words) at each 
iteration, and the time taken for training and retrieval of one 
word in shown in Fig 2(b). Fig.2(c) demonstrates the dependency 
of retrieval time with pre-trained database of different size.  The 
process of searching 30 query words against full dataset (i.e. 
2351 words) takes 0.1807 second and searching of one word 
takes 0.0059 sec (using a machine with INTEL i5 processor and 
4 GB RAM). Our prototype is implemented using Matlab, the 
speed can be increased using other low level language and 
parallel processing. 

IV.      CONCLUSIONS AND FUTURE WORK 
In this paper we have presented a fast word retrieval approach 
based on KLSH. This technique defines hash functions using 
arbitrary kernel, which are locality sensitive, thereby permitting 
sub linear time approximate similarity search. KLSH 
significantly widens the paradigm of LSH into more generic 
fashion, as it focuses on unknown kernelized visual data and 
does not require assumptions about the data distributions or 
input. In this paper KLSH technique is explained only in its 
implementation point of view, but for the detailed technical 
illustrations, see [15]. The test is performed on GW dataset. The 
results show that we can retrieve 50% of relevant words 
considering only 20% of the words in the set. Moreover the 
retrieval is very fast (<5s), and due the degraded quality and 
wrong segmentation of words in the dataset the quantitative 
result affected. As in other approaches, the result could be 
improved by pre-processing and pruning some irrelevant word 
images based on their size and ascenders/descenders, but we 
didn’t do it for exploring robustness of the system. Another 
perspective is about features. In future work, we will try to find 
out other more prominent features for representing the characters 
written in the word image and to improve the accuracy of the 
system. 
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Figure 2.4: Some of the query image and their similar images received.

processing or pruning of word images. As shown in Fig. 2.5a, the accuracy of the system is
far from being high but the advantage of this method is that the searching/retrieval time
is comparatively much less than any other retrieval techniques mentioned in literature.
So this can be taken as a trade-off between the accuracy and speed. The experiments
were conducted on data sets of increasing size (by 200 words) at each iteration, and the
time taken for training and retrieval of one word in shown in Fig 2.5b. The process of
searching 30 query words against full dataset (i.e. 2351 words) takes 0.1807 second and
searching of one word takes 0.0059 sec. (using a machine with Intel i5 processor and 4
GB RAM). Our prototype is implemented using Matlab, the speed can be increased using
other low level language and optimized implementation. Application of locality sensitive
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Fig1 (a): Retrieval accuracy V/s nearest neighbor threshold (b) Time taken to train with certain group of words and retrieve one word from the data-base. (c) 
Time taken to retrieve one word from the database from increasingly database of words. 
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element of it is obtained by repeating the bit level operation for 8 
times.  

1) Retrieval technique 

For searching a particular image or a set of images (say, q<<N 
the number of images) the following approach is used. The 
above-explained feature/s of the image/s is/are extracted. A set of 
random numbers (ℜ) is generated; the random numbers belongs 
to any value from (1…N) and a total of q such random numbers 
are generated: !ℜ!~!! 1,N ; !1 ≤ ! ≤ !. One should 
remember that, at the training phase, we had generated a set of N 
random numbers called!Χ! . Now a kernelized matrix !!"#!  is 
formed by using!!, ℜ!,!!Χ!. 

!!,!
!"#! = !!,!; ! ∈ ℚ; ! ∈ Χ; 1 ≤ ! ≤ !; 1 ≤ j ≤ ! 

ℑ!,! = !!!,!×!!,!
!"#!; 1 ≤ ! ≤ !! 

!!,!!"#! =
1; !"ℑ!,! > 0
0; !"ℎ!"#$%! 

Now, following the above-defined way, the entries in the !!,!!"#! 
matrix is represented in bit-wise. For finding the nearest 
neighbours between test image/s and the dataset, hamming 
distance between them are calculated by the following manner. 
The bit level representation ( !!,!; !1 ≤ ! ≤ !

! ) of !!,!!"#!  is 
performed in same manner, stated earlier. Now the matrix ℨ is 
defined as follows. 
!ℨ =[0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3    
,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2, 
3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5
,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,
3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4
,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,
7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4, 
3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4
,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6, 
7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4
5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5
,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8] 
The matrix Τ!,! is sorted in ascending order, where a represents 
each test image and d gives indexes of the nearest neighbour 
(NN) images for that particular test image. The matrix Τ!,! 
actually represents the distance for each of the test image to 
other images in database so that NN can be found for each of the 

test image. 
T is a null matrix of size a×N 
 FOR j = 1 to a 
    FOR n = 1 to !! 
 FOR k = 1 to N 
        !(!, 1) = !γ(j, n)⨁β(k, n) (Bit wise XOR) 
        T(j,k)= T(j,k)+ℨ((Y(k,1)+1),1); 
      END FOR 
    END FOR 
 END FOR 
Later the number of nearest neighbours the user wished to check 
for each test image can be easily visualized. 

III.      EXPERIMENTAL RESULTS 

A. Dataset & Performance Evaluation 
Experiments are performed considering the George Washington 
(GW) dataset described in [15]. This dataset consists of 10 good 
quality handwritten pages with a total of 2381 words. The 
performance is evaluated considering the retrieval accuracy (Rel. 
Returned/Relevant): at each threshold value, accuracy is the 
number of relevant words retrieved divided by the total number 
of relevant words. Here two word images are considered as 
relevant if their ASCII translations are same. The experiment is 
performed without doing any sort of pruning mechanism like the 
approach mentioned in [15].    

B. Results  
Figure 1 demonstrates the capability of indexing and retrieval of 
the dataset by taking different threshold values of nearest 
neighbours. In Figure 2 we present some qualitative query 
images and their corresponding retrieved images. The method is 
tested with randomly chosen 30 images (which were not used for 
training) from database and matching result is obtained by 
averaging the accuracy of these selected 30 query images. This 
process of testing the robustness of the system has been repeated 
several times and results are obtained as given in Fig1. For our 
experimentation, b = 300 and t = 30 (these values are 
experimentally obtained) are used. Concerning the quantitative 
evaluation, of GW database the accuracy of the system increases 
exponentially with the increase of NN threshold, which is quite 
obvious but the notable point here is that almost 50% retrieval 
accuracy can be obtained by considering NN equals to only 20% 
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Fig1 (a): Retrieval accuracy V/s nearest neighbor threshold (b) Time taken to train with certain group of words and retrieve one word from the data-base. (c) 
Time taken to retrieve one word from the database from increasingly database of words. 
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element of it is obtained by repeating the bit level operation for 8 
times.  

1) Retrieval technique 

For searching a particular image or a set of images (say, q<<N 
the number of images) the following approach is used. The 
above-explained feature/s of the image/s is/are extracted. A set of 
random numbers (ℜ) is generated; the random numbers belongs 
to any value from (1…N) and a total of q such random numbers 
are generated: !ℜ!~!! 1,N ; !1 ≤ ! ≤ !. One should 
remember that, at the training phase, we had generated a set of N 
random numbers called!Χ! . Now a kernelized matrix !!"#!  is 
formed by using!!, ℜ!,!!Χ!. 

!!,!
!"#! = !!,!; ! ∈ ℚ; ! ∈ Χ; 1 ≤ ! ≤ !; 1 ≤ j ≤ ! 

ℑ!,! = !!!,!×!!,!
!"#!; 1 ≤ ! ≤ !! 

!!,!!"#! =
1; !"ℑ!,! > 0
0; !"ℎ!"#$%! 

Now, following the above-defined way, the entries in the !!,!!"#! 
matrix is represented in bit-wise. For finding the nearest 
neighbours between test image/s and the dataset, hamming 
distance between them are calculated by the following manner. 
The bit level representation ( !!,!; !1 ≤ ! ≤ !

! ) of !!,!!"#!  is 
performed in same manner, stated earlier. Now the matrix ℨ is 
defined as follows. 
!ℨ =[0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3    
,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2, 
3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5
,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,
3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4
,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,
7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4, 
3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4
,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6, 
7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4
5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5
,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8] 
The matrix Τ!,! is sorted in ascending order, where a represents 
each test image and d gives indexes of the nearest neighbour 
(NN) images for that particular test image. The matrix Τ!,! 
actually represents the distance for each of the test image to 
other images in database so that NN can be found for each of the 

test image. 
T is a null matrix of size a×N 
 FOR j = 1 to a 
    FOR n = 1 to !! 
 FOR k = 1 to N 
        !(!, 1) = !γ(j, n)⨁β(k, n) (Bit wise XOR) 
        T(j,k)= T(j,k)+ℨ((Y(k,1)+1),1); 
      END FOR 
    END FOR 
 END FOR 
Later the number of nearest neighbours the user wished to check 
for each test image can be easily visualized. 

III.      EXPERIMENTAL RESULTS 

A. Dataset & Performance Evaluation 
Experiments are performed considering the George Washington 
(GW) dataset described in [15]. This dataset consists of 10 good 
quality handwritten pages with a total of 2381 words. The 
performance is evaluated considering the retrieval accuracy (Rel. 
Returned/Relevant): at each threshold value, accuracy is the 
number of relevant words retrieved divided by the total number 
of relevant words. Here two word images are considered as 
relevant if their ASCII translations are same. The experiment is 
performed without doing any sort of pruning mechanism like the 
approach mentioned in [15].    

B. Results  
Figure 1 demonstrates the capability of indexing and retrieval of 
the dataset by taking different threshold values of nearest 
neighbours. In Figure 2 we present some qualitative query 
images and their corresponding retrieved images. The method is 
tested with randomly chosen 30 images (which were not used for 
training) from database and matching result is obtained by 
averaging the accuracy of these selected 30 query images. This 
process of testing the robustness of the system has been repeated 
several times and results are obtained as given in Fig1. For our 
experimentation, b = 300 and t = 30 (these values are 
experimentally obtained) are used. Concerning the quantitative 
evaluation, of GW database the accuracy of the system increases 
exponentially with the increase of NN threshold, which is quite 
obvious but the notable point here is that almost 50% retrieval 
accuracy can be obtained by considering NN equals to only 20% 

Query Image 

(b)

Figure 2.5: (a) Retrieval accuracy v/s nearest neighbor threshold. (b) Time taken to train
with certain group of words and retrieve one word from the database.

hashing permits sub linear time approximation based similarity search. KLSH significantly
widens the paradigm of LSH into more generic fashion, as it focuses on unknown kernelized
visual data and does not require assumptions about the data distributions or input. The
result could be improved by pre-processing and pruning some irrelevant word images based
on their size and ascenders/descenders, but we didn’t do it for exploring robustness of the
system. Results can be further improved by applying more suitable and prominent features
for representing the characters written in the word images, which innately can improve the
accuracy of the system.

In the following section, we have explained various word spotting datasets, used through-
out this thesis for various experiments.
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2.5 Word Spotting Datasets

Several datasets can be used to evaluate word spotting algorithms, including the bench-
mark algorithms. In the following section, the datasets that we will use are described
in detail. In this thesis we mainly explored word spotting through "Query-by-example"
paradigm. In this kind of approach, the query image is selected by user or manually cropped
by user and the system finds this query image inside full document page. Generally there
are two main direction of "Query-by-example" based word spotting i) Segmentation based
ii) Segmentation free.

2.5.1 George Washington Dataset

This dataset is the handwritten manuscript of George Washington(GW), consisting
of 20 pages of letters, orders, and instructions of George Washington from 1755 century.
The quality of scanned pages varied from clean to difficult to read by human and the
pages originates from large collection with a variety of images. For our experiment, we
considered all the 20 pages. The text in the pages is a part of a larger corpus, written not
only by GeorgeWashington but also some of his associates. So, obviously it inhibits some
variation in writing style. We performed the experiments with GW dataset in two manners:
i) experiment on properly segmented words from provided ground truth in the dataset; ii)
experiments on segmented lines, by using SSHOG features, provided by Terasawa. et.al.
[Terasawa and Tanaka, 2009]. In Fig. 2.6a, some query images are shown and in Fig. 2.6b
a sample scanned page is shown from GW dataset.

	   	   	  

	   	  

	   	  

	   	  

	   	  

	   	  

	   	  

(a) Some query images used for GW dataset (b) Sample page from the GW dataset

Figure 2.6: Some query images and sample scanned page image from GW dataset

53



2.5. WORD SPOTTING DATASETS

 

Figure 2.7: Some segmented text lines from GW dataset.

2.5.2 Japanese Dataset

The other experimental material is Japanese manuscript. It is consisting of scanned
images of "Akoku Raishiki (The diary of Matsumae Kageyu)". This dataset contains total
92 scanned images scanned in 72× 72 ppi. There are total 1576 segmented lines available
from the images. The Fig. 2.8 illustrates queries as well as a sample page. In this dataset,
we used the GT provided by Terasawa. et.al. [Terasawa and Tanaka, 2009], which is
based on segmented lines. The extracted SSHOG features from each of these lines are also
provided.

	   	   	   	  
(a) Some query images used for Japanese dataset (b) Sample page from the Japanese dataset

Figure 2.8: Some query images and sample scanned page image from Japanese dataset
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2.5.3 Bentham Dataset

This dataset [Gatos et al., 2014] consists of a series of documents from the Bentham
collection. This dataset have been prepared in the tranScriptorium project2. The Bentham
dataset mainly includes manuscripts written by Jeremy Bentham (1748-1832) himself over
a period of sixty years, as well as fair copies written by Bentham’s secretarial staff. The
sample page and some of the query images are shown in Fig.2.9. The GT of this dataset
is provided in word level.

                         

(a) Query images used for Bentham dataset (b) Sample page from the Bentham dataset.

Figure 2.9: Query images and sample scanned page image from Bentham dataset.

2.5.4 CESR Dataset

We have also applied our word spotting technique on a machine printed historical
dataset, named as CESR3 dataset. This datasets comes from the resources of the Centre
d’Etude Suprieure de la Renaissance (CESR), through the BVH (Bibliothèques Virtuelles
Humanistes4) Project. The CESR has a collection of precious historical books, dating from
the middle of the XIV century to the beginning of the XVII century. The languages used
in the books are Latin or French. The dataset was composed from the two volumes of
Essais de messire Michel Seigneur de Montaigne, Chevalier de l’order du Roy, & Gentil-
homme ordinaire de Sa Chambre. This first edition was published in Bordeaux in 1580 by
S. Millanges 5. All the pages of the book are scanned with a resolution of 312 × 312 dpi
and saved in grey scale format with .jpg extension. The Vol.I of the book has 520 pages
and the Vol.II of the book has 676 pages. To process this book, we used the preprocessing
steps explained in Section 2.3. Consequently pseudo words (i.e. words, piece of words or
piece of lines) were extracted with HRLSA and characterized with column based features.
Some of such segmented pseudo words are shown in Fig. 2.10b.

2For the detail of this dataset, please see ICDAR-2015 "Keywords spotting" competition website :
http://transcriptorium.eu/ icdar15kws/data.html

3http://cesr.univ-tours.fr/
4See Bibliothèques Virtuelles Humanistes Project: http://www.bvh.univtours.fr/presentation en.asp
5Please see the links for the more details about the book : https://www.lib.virginia.edu/rmds/

collections/gordon/literary/montaigne/bibliography.html and http://search.lib.virginia.edu/
catalog/u50318
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      (a) Some examples of query images 

      (b) Some examples of segmented words (c) Sample document images 

(a) Some query images used for CESR dataset.

 

      (a) Some examples of query images 

      (b) Some examples of segmented words (c) Sample document images (b) Some examples of segmented pseudo word images.  

      (a) Some examples of query images 

      (b) Some examples of segmented words (c) Sample document images (c) Sample page from the CESR
dataset

Figure 2.10: Query images, some properly and improperly segmented word images and
sample scanned page image from CESR dataset.

2.6 Conclusion

We introduced this chapter by explaining a popular problematic domain called word
spotting and we discussed the technique to represent word spotting or word image match-
ing as a time series matching problem. After describing the domain of word spotting,
we have categorically mentioned a broad overview of related literatures on word spotting
problem followed by the description of our word spotting framework. The literature re-
view reveals that although learning based word spotting approaches outperformed other
techniques but the necessity of training for every different types of scripts, glyphs, training
time and resources (annotated data of properly segmented lines or words, computational
resource etc.) are the main impediment of learning based techniques. Although segmen-
tation free approaches provide a solution for these kinds of issues by proposing techniques
to spot words without any level of (word level or line level) segmentations, the low ac-
curacy of these techniques are the main drawbacks of segmentation free approaches. So,
segmentation based word spotting systems are convenient alternative for word spotting.
Although the main problem of such system is it’s dependency on segmentation results. If
proper segmentation can be attained, segmentation based word spotting systems can give
satisfactory results. Moreover, in later chapters, we propose a word spotting technique by
introducing new sequence matching techniques, which can handle (up-to certain extend)
segmentation errors and also able to work on segmented lines and pseudo words (piece of
lines or improperly segmented words).
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Chapter 3

Comparative Study of Conventional
Time Series Matching Techniques for
Word Spotting
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Abstract

In word spotting literature, classical DTW has been widely employed. However there
exists several other improved versions of DTW along with other robust sequence matching
techniques. Very few of them have been studied in the context of word spotting and
this scarcity of research work is the motivation of this chapter. This chapter presents a
comparative study of classical Dynamic Time Warping (DTW) technique and many of its
improved modifications, as well as other sequence matching techniques in the context of
word spotting. An experimental study on historical documents is performed to evaluate
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the behavior of DTW’s variants and other sequence matching techniques. The comparative
analysis shows that classical DTW remains a good choice when there are no segmentation
problems and when features are very local. In case of word segmentation errors, Continuous
Dynamic Programming (CDP) seems to be a better choice. This research work has also
highlights some other sequence matching algorithms in the context of word spotting, which
shows interesting results.

3.1 Introduction

Due to the growing utility from different fields of application (signal processing, medical
studies, weather forecasting, financial market, etc.) a notable research effort has been
devoted to time series matching techniques. Among these techniques, frequently applied
ones are Dynamic Time Warping (DTW) and its different variants [Ratanamahatana and
Keogh, 2004b,Keogh and Pazzani, 2000,Mayer and Zinke, 2006]. DTW has also been used
for word spotting in handwritten manuscripts and historical printed document images.
Word images can be thought as 2D signals, which can be matched by sequence matching
algorithms [Rath and Manmatha, 2006], [Khurshid et al., 2012], [Jawahar et al., 2004]. In
other application domains, DTW’s variants have been intensively evaluated to demonstrate
their interest [Keogh and Pazzani, 2000, Sakoe and Chiba, 1978], but they have not been
clearly studied and compared in the case of word spotting. In this chapter, we propose a
detailed comparative study of DTW and it’s variants for word spotting, using six types
of datasets for (handwritten and old printed documents) experimentation [Mondal et al.,
2015b].

The remainder of this chapter is organized as follows. All the datasets used for ex-
periments throughout this chapter and the word spotting framework are mentioned in
Section 3.2. The baseline of DTW approach and various other DP paths, warping con-
straints are briefly explained in Section 3.3. The specific techniques to reduce the quadratic
time complexity of DTW algorithm are mentioned in Section 3.4. Several other approaches
to improve the quality of DTW is mentioned in Section 3.5. Moreover, other dynamic pro-
gramming based sequence matching approaches, which has shown better performance than
classical DTW in several other domains e.g. shape matching, time series signal matching
etc. are mentioned in Section 3.7. An approach to parametrically combine different se-
quence matching techniques to improve the results are given in Section 3.8. Finally, the
study is concluded in Section 3.9.

3.2 Dataset Description and Used Experimental Protocol

For performing following experiments, we used the word spotting framework, described
in previous chapter. Only matching techniques are changed each time for evaluating it’s
performance on some specific datasets. Along with that, the features associated with that
specific datasets are also changed. Depending on the characteristics of the algorithms,
specific datasets and corresponding features are chosen for evaluation. The description of
total 6 datasets are given in the following section.

Dataset-1 (GW-15) This dataset is created from the complete George Washington
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dataset, by considering 10 better quality pages among 20 pages. Here we consider total
15 query images. The statistics of this dataset is mentioned in Table 3.1. For the details
of this dataset, please see Section 2.5.1 of Chapter 2. The column based feature (refer to
Section 2.3.2.1 of Chapter 2) is used to evaluate this dataset.

Table 3.1: Statistics of all queries of GW datasets.

 

Suprieure de la Renaissance (CESR), through BVH 
(Bibliothques Virtuelles Humanistes) Project. The dataset was 
formed from the book of 1st volume, named as, “ESSAIS DE 
MESSIRE MICHEL SEIGNEUR DE MONTAIGNE, 
CHEVALIER DE L’ORDER du Roy, & Gentil-homme ordi-
naire de Sa Chambre: LIVRE PREMIER”. The language used 
in the book is Latin or French.  S. Millanges published this 
first edition of the book in Bordeaux, France in 1580. All the 
pages of the book are scanned with the resolution of 312×312 
ppi and saved in grey scale format with .JPEG extension. 
More precisely, we have manually selected 10 queries (shown 
in Fig. 1 (a) (b) (c)) and the pages (shown in Fig. 1(d)) where 
the query words appear. The search is performed on the pages 
containing the query. So, on an average each query is searched 
in 15-20 selected pages and the query occurs between 15 to 25 
times.  

 
The second historical dataset is a hand-written manuscript 
named as George Washington (GW) dataset, which is 
consisting of 20 pages of letters, orders, and instructions of 
George Washington from 1755 century. The quality of 
scanned pages varied from clean to difficult to read by human 
and the pages originates from large collection with a variety of 
images. For our experiment, we considered all the pages. The 
text in the pages is a part of a larger corpus, written not only 
by George Washington but also some of his associates. So, 
obviously it inhibits some variation in writing style.  

 
TABLE 1: THE STATISTICS OF CSER DATASET 

!! !! Query word !! !! 

26(0) 
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20(0) 
27(0) 
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11 (520) 
13 (804) 

15(0) 
24(0) 
21(0) 
10(0) 
20(0) 

!! = No. of full (hyphenated) occurrences; !! = No. of Pages (No. of words) 
 

!! Query Image !! 
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15(1) 
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Letters 
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20(1) 
13(1) 
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22(0) 
21(1) 
22(0) 

 

!! = No. of full (hyphenated) occurrences;  
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Fig 1: Sample document image pages with demarcation of query word. 
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Dataset-2 (CESR-10) The second dataset is created from CESR data. The detailed
description of this dataset is provided in Section 2.5.4 of Chapter 2. We selected 10 queries
and, as a test set, the pages where the query (or one of its direct derivative) appears
(see Table 3.2). For this dataset also, column based features (refer to Section 2.3.2.1
of Chapter 2) are extracted and used to evaluate the performance of sequence matching
techniques.

Table 3.2: Statistics of CESR dataset.

 

Suprieure de la Renaissance (CESR), through BVH 
(Bibliothques Virtuelles Humanistes) Project. The dataset was 
formed from the book of 1st volume, named as, “ESSAIS DE 
MESSIRE MICHEL SEIGNEUR DE MONTAIGNE, 
CHEVALIER DE L’ORDER du Roy, & Gentil-homme ordi-
naire de Sa Chambre: LIVRE PREMIER”. The language used 
in the book is Latin or French.  S. Millanges published this 
first edition of the book in Bordeaux, France in 1580. All the 
pages of the book are scanned with the resolution of 312×312 
ppi and saved in grey scale format with .JPEG extension. 
More precisely, we have manually selected 10 queries (shown 
in Fig. 1 (a) (b) (c)) and the pages (shown in Fig. 1(d)) where 
the query words appear. The search is performed on the pages 
containing the query. So, on an average each query is searched 
in 15-20 selected pages and the query occurs between 15 to 25 
times.  

 
The second historical dataset is a hand-written manuscript 
named as George Washington (GW) dataset, which is 
consisting of 20 pages of letters, orders, and instructions of 
George Washington from 1755 century. The quality of 
scanned pages varied from clean to difficult to read by human 
and the pages originates from large collection with a variety of 
images. For our experiment, we considered all the pages. The 
text in the pages is a part of a larger corpus, written not only 
by George Washington but also some of his associates. So, 
obviously it inhibits some variation in writing style.  

 
TABLE 1: THE STATISTICS OF CSER DATASET 

!! !! Query word !! !! 

26(0) 
18(0) 
20(0) 
27(0) 

   21(0) 

21 (779) 
17 (1471) 
22 (1361) 
22 (811) 

22 (1442) 
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tantost 

18 (1449) 
21 (1586) 
23 (1786) 
11 (520) 
13 (804) 

15(0) 
24(0) 
21(0) 
10(0) 
20(0) 

!! = No. of full (hyphenated) occurrences; !! = No. of Pages (No. of words) 
 

!! Query Image !! 
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33(0) 
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Fig 1: Sample document image pages with demarcation of query word. 
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Dataset-3 (GW-HOG)This dataset is also created from GW manuscripts but here
instead of segmented words, we consider properly segmented lines. From these segmented
lines, slit style HOG based features are extracted for the matching purpose. Please note
that all the data, corresponding feature values and ground truth are provided by the
author of [Terasawa and Tanaka, 2009]. Elaborate description about this dataset and used
experimental protocol is mentioned in Section 4.4.1.1 of Chapter 4, which is dedicated to
the experiments with subsequence matching techniques.

Dataset-4 (Japanese-HOG) This dataset is a historical Japanese handwritten script
having total 1576 segmented lines. There are 4 query words used to evaluate different
algorithms applied on this dataset. Please note that we used here the segmented lines,
HOG features and Ground Truth, provided by the author of [Terasawa and Tanaka, 2009].
For detail on this dataset, please see Section 4.4.1.2 of Chapter 4.

Dataset-5 (GW-90) and Dataset-6 (Bentham) This dataset is also created from
GW dataset. It consists of 4860 segmented words, which are extracted from 20 pages. To
choose the queries, initially we grouped all the same words in individual clusters (total 1211
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clusters exists i.e. total 1211 unique words are present. Please note that, we ignored "," "-"
"." for clustering the words). Now we only choose those clusters of words, which has more
than 3 characters and at least 10 elements in their respective clusters. By maintaining
aforementioned conditions, we obtain 45 clusters. Now, one query image is randomly
chosen from each of the 45 clusters. This process of choosing queries is repeated another
time by again randomly choosing one query image from each cluster. So, for this dataset,
total 45× 2 = 90 query images were selected as the evaluation set.

The Dataset-6 is created from Bentham collection. For more details about this dataset,
please see Section 2.5.3 of Chapter 2. In this case, total 95 queries and 3234 segmented
words are provided with the dataset. For the case of Bentham dataset, total 95 queries
and 3234 segmented words are provided in the dataset.

Pruning Technique: Please note that, for the case of Dataset-5 and Dataset-6, one
pruning step is added with the previously mentioned word spotting framework (refer to
Section 2.3 of Chapter 2), for speeding-up the experimental process. Before matching,
irrelevant images with respect to the query are discarded by using simple properties of
images. The intension is to discard those target images, which are highly different (basic
property wise e.g. area, aspect ratio etc.) from the query/reference image. Fine tuning
of threshold is highly avoided and we tried to use single, primitive and logical threshold
values. After examining several pruning techniques, the following way of pruning is consid-
ered, by maintaining the trade-off between useful pruning rate and relaxed/loosely tuned
threshold. The objective was to make the system, easily adaptable for other datasets,
without much bothering about choosing perfect threshold. Thus, the following constrain
was used to determine whether a given word is relevant for a particular query or not:

1

2
≥ query aspect ratio

target aspect ratio
≥ 2

(3.1)

1

2
≥ query area

target area
≥ 2 (3.2)

1

2
≥ K of query

K of target
≥ 2 (3.3)

Pruning by Eqn 3.1 does not provide high pruning rate. Due to handwriting variability,
words belonging to the same category can often have quite different lengths and areas. For
this reason, two other pruning techniques are used. One is based on area of the bounding
boxes and the other one is a rough estimation of number of characters in the word. The
constraint on area, asserts that words in a cluster have similar areas, the second one asserts
that they would contains nearly same amounts of characters. The assumption of bounding
box area is obviously does not hold true if words in the same cluster occur at different scales,
yet this condition has good pruning capabilities without much lowering the recall, but this
technique misses some relevant words, which are of different scales. Whereas the second
technique, based on number of characters is an intuitive idea for pruning. This pruning
approach is unaffected by the problem of different scaling and multi writer issues. We
used a simple technique [Choudhary et al., 2013] for estimating number of characters (K ),
present in a word. By observing and experimenting the pros and cons of both the pruning
approaches separately, it was observed that instead of using these technique separately or
sequentially, combining these two criterion together would provide more robustness and
high recall to the system. Hence all target images which satisfy the condition-1 (Eqn 3.1)
and condition-2 (Eqn 3.2) or condition-3 (Eqn 3.3) are considered as a relevant images.
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Although this pruning technique is unable to retrieve all relevant words for every query (it
misses only few relevant words), it is a good trade-off between simplicity and high pruning
rate.

A well known performance measure, called as precision Pi and recall Ri metrics were
used to evaluate the performance of following mentioned sequence matching techniques as
well as other algorithms, mentioned in later chapters. Precision Pi is defined as the number
of retrieved relevant word instances divided by index i, while recall Ri is defined as the
number of relevant word instances divided by the total number of existing relevant words in
the dataset. In a typical retrieval scenario, precision is high at the top ranked positions and
diminishes gradually while recall behaves in reverse way. The average precision (AveP ) of
retrieving one element is defined as:

AveP =

κ∑
i=1

(Pi × reli)

number of relevant words
;κ = number of required ranks

(3.4)

The reli is an indicator function equaling to 1 if the item at rank i is a relevant word,
zero otherwise. The mean average precision (mAP) for a set of queries is obtained by
calculating the mean of the average precision scores for each query.

mAP =

Q∑
q=1

AveP (q)

Q
;Q = total number of queries (3.5)

3.3 Dynamic Time Warping

DTW is a technique for measuring similarity between two different time series by finding
their best correspondence. The best warping path, found in a path cost matrix is used
to construct the minimum distance between the two time series. Let’s assume, two time
series X = x1, x2, x3, ..., xp and Y = y1, y2, y3, ...., yq. To align these two sequences using
DTW, we construct an p × q matrix where the (ith, jth) element of the matrix contains
the distance (D(xi, yj)) between two points xi and yj (i.e. D(xi, yj) = (xi − yj)2). Each
matrix element (i, j) corresponds to the alignment between the points xi and yj . The best
warping path (W ) between these sequences, is a contiguous (described below) set of matrix
elements, which defines an optimal mapping between X and Y . The kth element of W is
defined as wk = (i, j)k. The optimal warping path can be defined in following manner:

W = w1, w2, ...., wK ; max(p, q) ≤ K ≤ p+ q − 1 (3.6)

This warping path follow several constraints:

i) Boundary conditions: w1 = (1, 1) and wK = (p, q). The boundary condition
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restrict the warping path to start and finish in diagonally opposite corner cells of the
matrix.

ii) Continuity The warping path is always continuous, i.e. if wk = (m,n) and wk−1 =
(u, v) then m − u ≤ 1 and n − v ≤ 1. This restricts the warping path to always go
through adjacent cells (including diagonally adjacent cells).

iii) Monotonicity The warping path is always monotonically spaced in time i.e. if
wk = (m,n) and wk−1 = (u, v) then m− u ≥ 0 and n− v ≥ 0.

Many other warping path exist which satisfy the above mentioned three constraints. How-
ever the goal here is to find the best optimal path that minimizes the warping cost:

DTW (X,Y ) = min

√√√√
K∑

k=1

wk (3.7)

This optimal path can be found by using dynamic programming, which defines a path cost
matrix (Pi,j) in the following way:

P(i,j) = D(i,j) +min





P(i,j−1)
P(i−1,j−1)
P(i−1,j)

∣∣∣∣
i=1,2,....,p;j=1,2,...,q

(3.8)

P(1,1) = D(1,1);P(i,0)
1<i≤p

= P(i−1,0) + D(i,0);P(0,j)
1<j≤q

= P(0,j−1) + D(0,j);. The optimal distance

(V) is stored in the cell P(p,q). For a detailed discussion on classical DTW and some of it’s
variants, which have been applied in time series matching problems, please see [Albrecht,
2009,Keogh and Pazzani, 2000].

3.3.1 DTW with varying step size condition

In the case of classical DTW, the warping path can get stuck at some position with
respect to one sequence, corresponding to local similarity or dissimilarity. To avoid such
situation, other step size conditions of DP-path have been proposed in the literature [Sakoe
and Chiba, 1978] (see Fig. 3.3)1. The symmetric equations are formed by adding some
weights on the DP paths to favor vertical, horizontal or (wd, wh, wv ∈ R3). The equally
weighted case (wd, wh, wv = 1, 1, 1) reduces to classical DTW and (wd, wh, wv = 2, 1, 1)
will influence the warping path to take the horizontal and vertical direction. The weighted
DP paths are designated as symmetric (red and blue colored text in Table. 3.3) whereas
equally weighted DP paths (blue colored text in Table. 3.3) are designated as asymmetric
DP paths. Depending on data, these different DP paths help to improve performance of
DTW matching over classical DTW approach.

1In the case of DP-path 3, only 3-Symmetric (http://www.ee.columbia.edu/ln/labrosa/matlab/dtw/dp2.m)
is documented in the literature.
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Table 3.3: Symmetric and Asymmetric DP algorithms with various slope constraints. The
texts in blue color represents the asymmetric equation of the various DP paths while the
text in red color is added with the one in blue, it represents the equations of symmetric
DP paths.
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)

3.3.2 Experimental Protocol and Results

The performance of different DP paths, are investigated through the experiments with
different datasets. The results on Dataset-1 and Dataset-2 are shown in Fig. 3.1. It is visible
from the curves that the best performing algorithms are; 0-Asymmetric (classical DTW),
0.5-Asymmetric and 3-Symmetric; among all the mentioned DP-Paths. The performance
of these three techniques are almost same in both datasets, with small differences only.
Most probable reason for this performance is the weights and particular DP-paths, which
are comparatively more suitable than others for handling degradation effects and presence
of noise in these two datasets. If we compare the results in Dataset-1 with Dataset-2,
it is visible that accuracies are significantly higher in Dataset-2. This is mainly due to
high degradation effects and the nature of scripts of Dataset-1 (handwritten), whereas in
Dataset-2, the presence of noise is comparatively low and features are more distinctive.
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Figure 3.1: a) Performance comparison of different DP paths on Dataset-1. b) Performance
comparison of different DP paths on Dataset-2.

When these DP-paths are applied on comparatively large datasets, i.e. Dataset-5 and
Dataset-6, almost similar behavior is visible i.e. 0-Asymmetric (classical DTW), 0.5-
Asymmetric and 3-Symmetric have outperformed others (see Fig. 3.2). Although there
are small differences in performance between these three techniques but they are not sig-
nificant. We think that these DP-paths and the corresponding weights are suitable for
word image matching in comparison with others. In both cases, the asymmetric DP paths
(0-Asymmetric, 0.5-Asymmetric) has significantly outperformed corresponding symmetric
ones, which implies that adding weights for favoring any directions of a DP path, is not
suitable for finding best warping path for word spotting applications. Whereas giving equal
preferences to each direction of a DP path is more helpful. On the contrary to this ratio-
nale, 3-Symmetric has also performed well. But please note that, we have not experimented
3-Asymmetric DP-path. As far our knowledge is concerned, 3-Asymmetric DP-path does
not exits in literature. The difference in performance between Dataset-5 and Dataset-6
comes from the nature of written scripts and the level of noise present in these datasets.

3.3.3 Global Constraints

Classical DTW technique has high computational complexity. One common way to
reduce the computational complexity is to impose global constraint conditions on the ad-
missible warping paths Warping window constraints can be used to restrict the warping
path, which intrinsically forces more intuitive alignments, as well as help to speed up the
calculation of dissimilarity score between two time series. In case of word spotting, the
constrained warping window can also prevents from pathological warping. The most widely
used constraints in the literature are Sakoe-Chiba (SC) band and Itakura Parallelogram.
Sakoe-Chiba band is a global constraint. It runs along the diagonal and has a fixed (hor-
izontal and vertical) width r. This constraint implies that an element xi can be aligned
only to one of the element yj with j ∈ [p−rq−r .(q− r),

p−r
q−r .(q+ r)]∩ [1 : p]. Sakoe-Chiba band

can be defined by the following Equation 3.9:
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Figure 3.2: a) Performance comparison of different DP paths on Dataset-5. b) Performance
comparison of different DP paths on Dataset-6.

i− r ≤ j ≤ i+ r; 1 ≤ i ≤ p; and 1 ≤ j ≤ q. (3.9)

The size of the SC-Band can be varied by changing the value of r. The performance of
matching highly depends on the chosen value of r. Tuning this value is highly onerous and
data dependent.

Moreover, experimental evaluations have shown that the performance of SC-Band and
Itakura parallelogram [Keogh and Pazzani, 2000] are similar. Finally, Itakura parallelo-
gram is more suitable choice because it is formed by local slope restrictions, it is a global
constraint and there are no tunable parameters. The pseudo code for Itakura parallelo-
gram (DTW) is presented in Algorithm 3 (Procedure ITAKURA). Before going into the

Algorithm 2: Itakura Paralleogram
Input: i(i ∈ [1, ...p]), j(j ∈ [1, ..., q]), p(length of query), q(length of target)
Output: bool (output is 1 if i and j are within Itakura window, 0 otherwise)

1 bool = 0;
2 if {j < 2} × {i & i ≤ 2× j} & {i ≥ (p− 1)− (2× (q − j))} &
{j > (q − 1)− (2× (p− i))} then

3 bool = 1;
4 return bool

discussion of another sequence matching technique, we would like to discuss here about
one important bottleneck of Itakura parallelogram, which has a big impact in our domain
of word spotting. By analyzing the mentioned pseudo code of Itakura parallelogram, it is
visible that when q ≥ 2× p, Itakura parallelogram could not be formed. We consider a toy
example to demonstrate the problem. As shown in Fig.3.3, when the length of target signal
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3.3. DYNAMIC TIME WARPING

is gradually increased, the shape of Itakura parallelogram gets changed and it gradually
becomes thinner. The most appropriate shape of Itakura parallelogram can be visible in
the left most figure (see Fig. 3.3a), where p = 200 and q = 200, i.e. when the two sequence
have the same size. But when p = 200, q = 250 (see Fig. 3.3b), p = 200, q = 300 (see Fig.
3.3c), p = 200, q = 350 (see Fig. 3.3c) and p = 200, q = 399 (see Fig. 3.3d) respectively, the
change in shape of Itakura Parallelogram can be visible. When p = 200 and q = 400, (see
Fig. 3.3e) i.e. when the target’s length is double of query’s length, we could not formulate
Itakura parallelogram. This dependence of Itakura parallelogram formation on the length
of query and target signal is an obvious factor but it has not been well mentioned in the
literature [Ratanamahatana and Keogh, 2004a]. Moreover, no concrete solution is provided
in the literature to overcome this problem, except re-sampling. In the experimental section,
we have given a simple tricks to handle this problem for word spotting.
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Figure 3.3: The change in the shape of Itakura parallelogram with the change in length of
target signal.

For a general constraint region, denoted by R, the path constraint warping path pR can
be computed similar to the unconstrained case by setting c(xi, yj) =∞ for all (i, j) ∈ [{1 :
N} × {1 : M}] \R. So, in the computation of pR only the cells that lie inside R would be
evaluated. Introducing constraints would definitively speedup the process, for example, in
the case of Sakeo-Chiba band of a fixed width T ;T << p;T << q, only O(T ×max(p, q))
computations need to be performed instead of O(pq) as required in classical DTW. However
the use of global constraints for aligning two sequences could be troublesome, since there
is no guarantee that the optimal warping path will definitely go through the specified
constraint regions. This fact may lead to undesirable or even completely useless alignment
results in some cases but it can also prevent from pathological matching.

3.3.4 Experimental Protocol and Results

To verify the effects of these constraints based DP paths, we experimented it on Dataset-
1 and Dataset-2. Fixing the proper radius of SC-Band is a cumbersome task. It takes a
lot of manual efforts to find the best performing radius of SC-Band. We have heuristically
set the optimized radius as 23% (resp. 30%) of the length of target sequence for Dataset-1
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(resp. Dataset-2). The PR plot on Dataset-1 Dataset-2 shows that both constraints have
performed equally well whereas Itakura Band has slightly outperformed SC-Band. But the
most interesting observation here is that for the case of Dataset-1, we see that constraining
the DP path significantly improves the result over classical DTW (0-Asymmetric). The
mAP value of SC-Band and Itakura Parallelogram are 0.5876 and 0.6017 for Dataset-
1 whereas mAP of classical DTW was 0.4576. So, we can see almost 15% increase in
accuracy. But for Dataset-2, this trend cannot be observed. Indeed here, classical DTW
has outperformed constrained DTW. The most probable reason of these kinds of behavior
is that for Dataset-1, constraining the warping path is helpful as it limits pathological
matching which inherently helps it to find best correspondences between query and target
sequences, which could vary because of the nature of handwriting in the dataset. On the
contrary, completely opposite kinds of behavior can be seen on Dataset-2. Most probably,
due to the printed nature of this dataset, constraining the warping path does not help much
to find the optimal correspondences and it actually generates resistance to obtain the best
warping path. Another possible reason could be our expectation of finding derivatives of
queries in Dataset-2, which we have considered as ground truth.
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Figure 3.4: a) Performance comparison of DTW constraints on Dataset-1. b) Performance
comparison of DTW constraints on Dataset-2.

Due to the complexity for choosing optimal r, and because previous results shows
that SC-Band and Itakura parallelogram has almost similar performance, we did not use
SC-Band for our experiments with Dataset-5 and Dataset-6. The performance of Itakura
Paralleogam on Dataset-5 and Dataset-6, can be seen from Fig. 3.5a and Fig. 3.5b re-
spectively. The same trend of improvement ( i.e. Itakura Parallelogram has outperformed
classical DTW on both datasets) can be visible from these two datasets also, which are
also handwritten texts as Dataset-1;.

3.4 Speeding up DTW

There are some techniques to reduce the time and space complexity of DTW (O(mn)).
The methods used to make it faster can be broadly classified into three principal categories.
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Figure 3.5: a) Performance comparison of DTW constraints on Dataset-5. b) Performance
comparison of DTW constraints on Dataset-6.

3.4.1 Data abstraction Based

An effective strategy to quickly calculate the DTW distance is by performing the align-
ment on coarsened versions of the sequences X and Y , thus reducing the lengths of the two
considered sequences. Such a strategy is also known as dimensionality reduction or data
abstraction. In the following section, we present several of such data abstraction based
speedup techniques.

3.4.1.1 Piecewise DTW (PDTW)

Most time series data can be efficiently approximated by piecewise aggregates, so that
DTW can operate on higher level of data [Keogh and Pazzani, 2000]. The main idea of
PDTW is to reduce the size of original signal by keeping as much information as possi-
ble into the reduced signal. Let R be the reduced dimension of transformed time series
(1 ≤ R ≤ p). Although it is not the requirement of the approach but for convenience of
explanation we assume that R is a factor of p. So a time series X of length p is represented
by a vector of X̂ = x̂1, x̂2, ..., x̂R. The ith element of X̂ is calculated by the equation:
x̂i = R

p

∑ p
R
i

j= p
R
(i−1)+1

xj . Simply stated, to reduce the data from p dimensions to R di-
mensions, the data is divided into R equal sized "frames". The mean value of the data
falling within a frame is calculated and a vector of these values becomes the data reduced
representation (also called as sub-sampling). Two special cases worth noting are when
R = p the transformed representation is identical to the original representation. When
R = 1 the transformed representation is simply the mean of the original sequence. More
generally the transformation produces a piecewise constant approximation of the original
sequence, this approach is named as Piecewise Aggregate Approximation (PAA). We denote
the ratio of the length of the original time series to the length of its PAA representation,
the compression rate c = p

R . In choosing a value for c, there is a classic trade-off between
memory savings and fidelity. In this work we do not address the problem of choosing the
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"best" compression rate. The "best" compression rate depends on the structure of the data
itself and the task at hand (i.e. clustering/classification/retrieval etc). For most applica-
tions the best approach may be to have an expert interact with the data and choose this
parameter, although automated approaches to similar problems have been suggested. So
this approach of dimensionality reduction is applied on both the query (X) and target (Y )
signal. After obtaining the reduced signal the same approach of DTW is applied on X̂ and
Ŷ .

3.4.1.2 Fast-DTW

One way to speedup DTW process is to use constraint, where the optimal warping path
is calculated thorough the constraint window. Another way to speedup DTW is to use data
abstraction. In data abstraction based approach, the DTW algorithm operates on reduced
representation of data and the warping path becomes more and more inaccurate as the
level of abstraction increases [Salvador and Chan, 2007]. After finding the warping path
on reduced representation of data, generally this one is projected on the higher dimension
of data. But directly projecting the low resolution warping path to the full resolution,
usually creates a warp path, which is far away from the optimal. This is mainly due to the
fact that these sorts of projection from reduced representation to higher representation,
ignores local variations that could be significant. Fast-DTW is based on both constraints
as well as abstraction based approach. Through data abstraction, Fast-DTW first finds the
optimal path through a coarse representation of data and then it is refined to the original
data, using following mentioned three stages.

Coarsening: Generate reduced representation of the time series that represents the
same curve as accurately as possible with less data points.

Projection: After obtaining the reduced representation of the data, the minimum
distance warping path at the lower resolution is calculated and used as an initial guess for
high resolution’s minimum distance warp path.

Refinement: Refine the warping path, projected from lower resolution into the warp-
ing path of higher resolution through local adjustment of the warping path.

It was demonstrated in [Salvador and Chan, 2007] that fast DTW runs in O(N) time
with sufficient accuracy, and thus this approach speeds up the classical DTW method
significantly.

3.4.1.3 Sparse DTW

To compute Dynamic Time Warping (DTW) distance between two time series that
always yields the optimal result, a new space-efficient approach (SparseDTW) is proposed
in [Al-Naymat et al., 2009]. This technique presents a new approach, which is in contrast
to other known approaches which typically sacrifice optimality to attain space efficiency.
This technique dynamically exploits the existence of similarity and/or correlation between
the time series. The amount of similarity between two time series is proportional to the
amount of space required for computing DTW between them i.e. if more similarity exits
between the time series the less space required to compute DTW between them. The
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convenient way to speedup DTW is to impose priori constraints that does not exploit
similarity characteristics that may be present in the data.

3.4.1.4 Accurate and Fast DTW (AF_DTW)

Accurate and Fast DTW (AF_DTW) is an improved version of classical DTW, which
is computed by using backward strategy [Li and Yang, 2013]. In contrast to classical DTW,
AF_DTW starts from (p, q) to (1, 1) and each element in cost matrix P is calculated by
considering the maximum of three right adjacent elements subtracting the distance D(i, j).

P(i,j)
i=p,p−1,....,1;j=q,q−1,.....,1

= max





P(i,j+1)

P(i+1,j+1)

P(i+1,j)

−D(i,j)

Pp+1,q+1 = 0;Pp,q+1 = Pp+1,q = −∞

(3.10)

After forming the path cost matrix by Eqn 3.10, the warping path (P ′ = {p1, p2, ...., pK})
is calculated in the same way as DTW. The constructed warping path also follows three
constraints : boundary condition, continuity and monotonicity. Obviously, this dynamic
programming based warping path is used to calculate the best warping path:

BS_DTW (X,Y ) = max
P

K∑

k=1

D(pK) (3.11)

BS_DTW has the same accuracy as DTW and the absolute distance value of BS_DTW
(|BS_DTW|) is same as the distance value of DTW. Moreover the time and space com-
plexity of DTW and BS_DTW are same.

In addition, the time and space complexity of BS_DTW is reduced by adopting a
strategy, inspired by Itakura and Sakeo-Chiba band. The values in the path cost matrix
depends on the initial value at P(p+1,q+1). If P(p+1,q+1) is initially set to zero then all the
elements in P are negative but if P(p+1,q+1) is set to a positive value then some of the
elements in the path cost matrix would be positive and these positive elements would be
adjacent. It is shown by some toy example in [Li and Yang, 2013] that the best warping
path would always appear in the scope of these positive cells. Let’s say P(p+1,q+1) = θ
as the initial value. It is shown in the paper that the best warping path always exists
in the reduced scope with regard to the special value of θ. So, if the algorithm is forced
to find the best warping path in the reduced scope, i.e. only through the positive cells,
in such a way the time and space complexity would be reduced. The main problem is to
choose a good value of θ so that the best warping path could always be surrounded by
the positive cells. It is shown in [Li and Yang, 2013] that a good approximation of θ is

θ =
n∑
k=1

(xp − yp)2;n = p = q
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3.4.2 Experimental Protocol and Results

To evaluate the above mentioned approaches for speeding up DTW process, we experi-
mented them on Dataset-1 and Dataset-2. Due to the inherent architecture of Fast-DTW,
the accuracy of it would be always lower than classical DTW. But as this method works
on coarse representation of data, it will always speedup DTW calculation process with
little sacrifice of accuracy. From the following curves, mentioned in Fig. 3.6, it can be
seen that in both the datasets, Fast-DTW has low accuracy than the classical DTW but it
takes almost half computational time than classical DTW (refer to Table. 3.6). Whereas,
along with the reduction of computational time (refer to Table. 3.6), in some cases PDTW
can outperform classical DTW. Such an example can be seen in Fig. 3.6b. It can be visi-
ble from the experiment on Dataset-2 that PDTW has outperformed classical DTW. The
sub-sampling property of PDTW helps it to ignore some local noise and variations, which
inherently helps it to improve the results. As PDTW can be considered as a technique
to improve the quality of classical DTW, the experimental results of it on Dataset-5 and
Dataset-6 are given in the following Section 3.5. As the effectiveness of Fast-DTW (about
the reduction in computational time and accuracy) can be visible from small dataset, we
have not applied it on larger dataset i.e. Dataset-5 and Dataset-6.

We had carefully implemented the code of Sparse-DTW but most probably due to
some implementation issues, it does not behave as expected. Although all other claims
of this approach works fine but it could not speedup the DTW calculation process on toy
examples. Due to this problem, currently, we have not tested it on our word spotting
datasets. Regarding AF_DTW, we have not yet implemented it. We would like to work
on both of these techniques in near future.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
r
e
c
i
s
i
o
n

 

 
Fast−DTW (0.4348)
DTW (0.4557)
PDTW (0.3466)

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
r
e
c
i
s
i
o
n

 

 
Fast−DTW (0.7806)
DTW (0.8486)
PDTW (0.8929)

(b)

Figure 3.6: a) Performance comparison of Fast-DTW and PDTW in comparison with
classical DTW on Dataset-1. b) Performance comparison of Fast-DTW and PDTW in
comparison with classical DTW on Dataset-2.
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3.4.3 Indexing based techniques

For very large time series classification or clustering based problems, such kind of
techniques introduce a lower bounding functions for reducing the number of times, DTW
must be run during the complete process.

Iterative Deepening DTW is one example mentioned in [Chu et al., 2002]. The intuition
behind this algorithm is that based on a model, which describes distribution of distance
approximation errors, we can calculate the approximation of DTW at increasingly finer
levels of representations. Then we can use the stored model to filter out poor matches
with some user defined tolerance. Here the user has to define the tolerance value for
false dismissals. In case of zero tolerance for false dismissals this technique will behave as
classical DTW. However, with an increasing tolerance value the search technique becomes
more faster and by pruning more elements.

The algorithm begins by approximating the query and target series (i.e. X and Y )
by PAA approximation technique at a dimensionality reduction level of dl for obtaining
the distance (DPDTW (dl)) in reduced dimensional signal. For the depth dl and the user
confidence (or the user defined acceptable tolerance value for false dismissal), the algorithm
determines whether Y could be potential object for possible expansion or not. If so, the
algorithm computes the distance in higher resolution i.e. the algorithm computes X and
Y with a more precise approximation by using a lower dimensionality reduction rate of d2
for determining DPDTW (d2). This process is continued until d has reached the maximum
depth. At that point the approximation becomes the original data and we calculate the
true warping distance DDTW between the sequence X and Y .

This technique is suitable for dataset containing large amount of time series signals,
where the signals are of big lengths. This repetitive process of checking two signals by
continuously increasing the level of approximation from fine to finer level could be helpful
if the length of the signal is huge (approximatively in thousands). For our case of segmented
word image matching, the length of the signals are not very large (mostly in hundreds).
So this algorithm would not be much useful for our case as it will take comparatively
quite a good amount of time during the process of dimensionality reduction by PAA,
and repetitive calculation of DTW on dimensionality reduced signals compared to one
time complete calculation of DTW on original signal or calculation of DTW on reduced
dimensional signal (one time not multiple time) with rightly adjusted reduction rate. Due
to these reason, we have not tested this technique on the datasets. Moreover, we performed
experiment with a very small dataset and we observed that the aforementioned facts are
true that this technique is not useful for word image matching.

3.5 Improving the quality of DTW

In the previous section, we have observed that there are several drawbacks of classi-
cal DTW. In this section, we discuss several improvements proposed in the literature for
improving the performance of classical DTW.
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3.5.1 Derivative Dynamic Time Warping (DDTW)

In typical condition, DTW tries to explain variability in the Y -axis by warping the X-
axis, this may lead to unexpected singularities (the alignments between a point of a series
with multiple points of the other series) and unintuitive alignments. In order to overcome
those weaknesses of DTW, DDTW transforms the original points into the higher level fea-
tures, which contain the shape information of a sequence. This technique considers the first
derivatives of the signal instead of original one [Keogh and Pazzani, 2000], which intrinsi-
cally helps to handle the presence of noise in the signal. The first derivative of sequences
gives the information about the shape of a signal. With DDTW, the distance measure
D(xi, yj) is not euclidean distance but rather the square of the difference of the estimated
derivatives of xi and yj . The following techniques is used to generate the derivative of a
signal X.

x̄i =
(xi − xi−1) + ((xi+1 − xi−1)/2)

2
; 1 < i < p (3.12)

This estimate is simply the average of the slope of the line through the point in question
and its left neighbor, and the slope of the line through the left neighbor and right neighbor.

3.5.2 Piecewise Derivative Dynamic Time Warping (PDDTW)

Another similar technique, known as Piecewise Derivative Dynamic Time Warping
(PDDTW) [Zifan et al., 2007], uses a derivative distance measure in order to reduce singu-
larities and extracting higher level features for capturing the benefit of PDTW and DDTW
together. This technique takes the advantage of the fact that the time series can be ap-
proximated by piecewise aggregate approximations and over that it can use the derivative
distance measure to reduce singularities hence can be able to extract higher level features.
In order to align two sequences X and Y , firstly a reduced dimensional series X̂ and Ŷ are
obtained respectively. The length of this reduced dimensional series are p

φ ×
q
φ , where the

term φ denotes the sampling frequency for piecewise aggregate approximations. Then, the
distance matrix (D(x̂s, ŷt); 1 ≤ s ≤ ( pφ); 1 ≤ t ≤ ( qφ)) between two elements x̂s and ŷt is
calculated. To calculate this distance matrix, the square of the difference of the estimated
derivatives of elements x̂s and ŷt is calculated by the Eqn 3.12.

3.5.3 Non Isometric Transforms Based DTW

In this technique [Górecki and Luczak, 2014], the authors proposed to use non isometric
functions other than the derivative, which can be used in a similar manner and can give
better results than DDTW. There are three transforms that are popularly used in technical
studies: the cosine transform, sine transform and Hilbert transform. All three are non
Isometric for the DTW distance measure. For a series X = {xi : i = 1, 2, ..., p}, we have a
transform X̄ = {x̄k : k = 1, 2, ..p}
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Cosine transform: x̄k =

p∑

i=1

xi cos[
π

p
(i− 1

2
)(k − 1)] (3.13)

Sine transform:

x̄k =

p∑

i=1

xi sin[
π

p
(i− 1

2
)(k− 1)] (3.14)

Hilbert transform:

x̄k =

p∑

i=1
i 6=k

xi
k − 1

(3.15)

After obtaining any of these transformed signal, DTW technique is applied on the
transformed signal for calculating the dissimilarity value between two sequences.

3.5.4 Value Derivative DTW

One of the drawback of classical DTW is that it only considers data points on Y -
axis value. On the basis of DDTW, this algorithm [Kulbacki et al., 2002] propose the
following way of calculating distance matrix D. The derivative of query and target signals
are calculated by x̄i = xi − xi−1 and ȳi = yi − yi−1. After obtaining the derivated query
and target signal, the distance matrix (D) between these signal is calculated by:

D(xi, yj) =
√

(xi − yj)2.(x̄i − ȳj)2 (3.16)

After calculating the above defined distance matrix, the classical DTW technique is applied
for calculating the final distance between the query and target sequence.

3.5.5 Weighted Hybrid Derivative Dynamic TimeWarping (WHDDTW)

It is mentioned in [Benedikt et al., 2008] that even DDTW is also noise sensitive, thus
an improvement is proposed in this technique. The information from raw signal contains
useful information, and smoothing the raw signal helps to stabilise the process. Moreover
the derivative provides better knowledge, for example the first derivative gives information
on speed and the second derivative gives information on accelerations and decelerations.
Thus, the distance matrix (D) is computed in the following manner, where Di,j represent
distance between ith and jth elements of query and target signal. Whereas ¯̄Di,j and D̂i,j

represents the distance between 1st and 2nd order derivative of query and target signal.
Final distance between two elements is given by combining these three terms according to
Eqn 3.17.

DWHDDTW
i,j = w0.Di,j + w1.D̄i,j + w2.

¯̄Di,j (3.17)
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The same process as classical DTW next followed for generating the path cost matrix and
final distance between query and target signal. Since derivatives are noise sensitive, too
high weight values will affect the performance of the algorithm. Thus, the weight values;
w0, w1 and w2, should be chosen by keeping into account the Signal-to-Noise ratio and the
difference of magnitudes between the signal and its derivatives. In this study, we choose
w0 = 1, w1 = 2 and w2 = 2. The complexity of the algorithm is same as DTW.

3.5.6 Local Dynamic Time Warping (LDTW)

DTW algorithm is modified here to perform pseudo-local alignment using some specific
DP-paths [Listgarten et al., 2005]. This algorithm applies different DP paths at different
location of path cost matrix (P) for handling stretching and compression of individual
points in time series data. This approach extends the DTW algorithm to perform pseudo-
local alignments with the Local Dynamic Time Warping (LDTW) algorithm. Based on
the location in path cost matrix, the DTW equation is changed in the following manner:

P(i, j)
1≤i≤p−1;1≤j≤q−1

= D(i, j)+min





P(i− 1, j − 1)
P(i− 2, j − 1) + D(i− 1, j) + 1

3
P(i− 1, j − 2) + D(i, j − 1) + 1

3
P(i− 3, j − 1) + D(i− 2, j) + D(i− 1, j) + 2

3
P(i− 1, j − 3) + D(i, j − 2) + D(i, j − 1) + 2

3

(3.18)

For the last column the DTW equation is:

P(i, j)
1≤i≤p−1;j=q

= min





P(i− 1, j − 1)
P(i− 2, j − 1) + D(i− 1, j)
P(i− 1, j − 2) + D(i, j − 1) + 1

3
P(i− 3, j − 1) + D(i− 2, j)
P(i− 1, j − 3) + D(i, j − 2) + D(i, j − 1) + 2

3

(3.19)

For the last row the DTW equation is:

P(i, j)
i=p;1≤j≤q−1

= min





P(i− 1, j − 1)
P(i− 2, j − 1) + D(i− 1, j) + 1

3
P(i− 1, j − 2) + D(i, j − 1)
P(i− 1, j − 3) + D(i, j − 2)
P(i− 3, j − 1) + D(i− 2, j) + D(i− 1, j) + 2

3

(3.20)

and finally for the last row and last column, it combines to
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P(i, j)
i=p;j=q

= min





P(i− 1, j − 1),
P(i− 2, j − 1) + D(i− 1, j)
P(i− 1, j − 2) + D(i, j − 1)
P(i− 3, j − 1) + D(i− 2, j)
P(i− 1, j − 3) + D(i, j − 2)

(3.21)

To find the warping path, we must look down the last row and the last column and find the
cell that has the smallest value. That cell is the end of a local alignment, and the warping
path can be found by tracing back from that cell until we reach at the first row or column.

3.5.7 Weighted Dynamic Time Warping (WDTW)

The standard DTW calculates the distance of all points with equal penalization of
each point regardless of the phase difference. The WDTW algorithm penalizes the points
according to the phase difference between target and query element to prevent minimum
distance distortion by outliers. The key idea is that, if the phase difference is low, smaller
weight is imposed (i.e. less penalty is imposed) because neighboring points are important,
otherwise larger weight is imposed. This approach penalizes matching of points with phase
difference (difference of indices), in order to prevent distortions caused by outliers [Jeong
et al., 2011]. While creating the p×q path cost matrix, the distance between the two points
xi and yj is calculated by Dw(xi, yj) = ‖W|i−j|(xi−yj)‖p, whereW|i−j| is a positive weight
value between the two points xi and yj . The algorithm implies that when we calculate the
distance between the two points xi in sequence X and yj in sequence Y , the weight value
will be determined based on the phase difference |i− j|. In other words, if the two points
xi and yj are near, smaller weights can be imposed. Thus, the optimal distance between
two sequences is defined as the minimum path over all possible paths as follows:

WDTWp(X,Y ) = p
√
P(i, j) (3.22)

where, P(i, j) = |W|i−j|(xj − yj)p|+ min{P(i− 1, j − 1),P(i− 1, j),P(i, j − 1)} A tech-
nique called as "Modified logistic weight function(MLWF)" is used to systematically assign
weights as a function of phase difference between two points. The parameter g controls the
amount of penalization considering phase difference. The weight value W(i) = Wmax

1+e(−g(i−mc))

where i = 1, ...., p, p is the length of a sequence and pc is the midpoint of a sequence. Wmax

is the desired upper bound for the weight parameter and g is an empirical constant that
controls the curvature of the function; that is g controls the level of penalization for the
points with larger phase difference. The value of g could range from zero to infinity.

3.5.8 Weighted Derivative Dynamic Time Warping (WDDTW)

The proposed concept of weighted dynamic time warping can be extended to variants
of DTW. In this sub-method, the proposed idea of derivative dynamic time warping is
extended to weighted version, which is called weighted derivative dynamic time warping.
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The weighted version of DDTW (WDDTW) is calculated by using the same Eqn 3.22 on
X̄ and Ȳ respectively; where X̄ and Ȳ are the 1st order derivative of query and target
signals respectively; i.e. WDDTWp(Xi, Yj) = WDTWp(X̄i, Ȳj)

3.5.9 Continuous DTW (CDTW)

Here a sample point in one of the signal is allowed to be matched with an implicit
point lying between two sample points of the other signal [Munich and Perona, 1999]. This
method compares planar curves which enables it to perform matching at sub-sampling
resolution. Due to the intrinsic characteristics of this algorithm, it is difficult to properly
adapt this technique for word image matching problem. Due to this issue, we have not
implemented and applied this approach for our evaluation purpose.
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Figure 3.7: a) Performance comparison of different algorithms for improving the quality of
DTW on Dataset-1. b) Performance comparison of different algorithms for improving the
quality of DTW on Dataset-2.

3.5.10 Experimental Protocol and Results

To evaluate the performance of these above defined algorithms in this section, we per-
formed experiments with 4 datasets.

The experiment on Dataset-1 and Dataset-2 shows some improvement of accuracy in
comparison to classical DTW. It can also be observed that different algorithms perform
differently in the case of handwritten and printed documents. For example, in Dataset-1
(refer to Fig.3.7a) Isometric Hilbert has outperformed all other techniques, whereas Pseudo
Local DTW is second best. Moreover it can also be visible that Isometric Sin and Weighted
Hybrid DTW has also performed good enough in comparison with rest of the algorithms.
A different behavior is visible, when these algorithms were applied on machine printed
documents (Dataset-2). We can observe (refer to Fig. 3.7b) from the result that PDDTW
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has outperformed all others, whereas PDTW has not performed well enough. In this
dataset also, Isometric Hilbert has outperformed others except PDDTW. The performance
of Weighted Hybrid DTW is quite competitive also. Another fact here is that although the
performance of Pseudo Local DTW is one of the best but it does not perform as good as
in Dataset-1.

From the analysis of results, it is interesting to observe that Hilbert transform and
Sin transform on word image feature values, add distinguishable property to the image
features, which is better than typical derivative of image feature values. Moreover, it can
also be observed that weighted hybridization of original signal and it’s 1st and 2nd order
derivative (Weighted Hybrid DTW) is significantly useful for word image matching. Most
probably, the variable performance of Pseudo local DTW on this two datasets is due to the
presence of more local variations and degradation noise in Dataset-1 than Dataset-2. The
results of DDTW v/s DTW, PDDTW v/s PDTW and WDDTW v/s WDTW shows that
the local variation and noise can’t be handled by simple derivative operation on the signals.
Instead of improving the results, these derivative operations actually deteriorate the results.
The same pattern of behavior can also be observed from Dataset-2, where the derivative
operation on original signals highly reduces the accuracies. The interesting performance
of PDDTW on Dataset-2 is mainly due to the sub-sampling of signal derivatives. The
same technique i.e. PDDTW has not performed well in Dataset-1 because of it’s nature
(handwritten texts) and presence of local variations. Weight factors (g) for WDTW (resp.
WDDTW) are set at 0.31 (resp. 0.26) for Dataset-1 and at 0.03 (resp. 0.01) for Dataset-2.

After observing interesting behavior of different aforementioned algorithms on Dataset-
1 and Dataset-2, we choose some of the best performing techniques for comparatively
bigger datasets. So, we decided to experiment the following algorithms on Dataset-5 and
Dataset-6: i) Isometric Hilbert DTW ii) Isometric Sin DTW iii) Weighted Hybrid DTW
iv) PDTW v) PDDTW vi) Pseudo Local DTW. The result of these techniques can be seen
in the following Fig. 3.8. As both of these datasets are consists of handwritten historical
texts, we first apply all of these techniques on Dataset-6 (experiments on this dataset is
comparatively fast). The P-R curves of the techniques are plotted in Fig. 3.8b. It is visible
from the results that the algorithms shows similar kinds of behavior as the ones in Dataset-
1 and Dataset-2. Here also Isometric Hilbert has outperformed other techniques, whereas
Isometric Sin has also performed well. In the similar manner, weighted hybridization of
original and derivative signal, performs better than simple derivative of signals. LDTW has
also performed well due to the presence of local variations. Interestingly the performance
of PDTW is significantly higher than PDDTW, which implies that sub-sampling of original
signal is better than transforming the signal by derivative operation.

After observing the results on Dataset-6, we applied the best performing algorithms
on Dataset-5. The P-R curves given in Fig. 3.8a shows that according to our expectation,
Isometric Hilbert outperformed all others while LDTW, Weighted Hybrid and PDTW
has also performed well. This performance on Dataset-6, justify our rationale, given for
Dataset-1 and Dataset-5.
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Figure 3.8: a) Performance comparison of different algorithms for improving the quality
of DTW on Dataset-5. b) Performance comparison of different different algorithms for
improving the quality of DTW on Dataset-6.

3.6 Finding subsequence with DTW

All of the algorithms, mentioned in above section (refer to Section 3.5) was designed for
matching sequences of similar length (approximatively). As all of these technique proposes
some modification of classical DTW, so these techniques can be applicable for sequences
of different lengths, which classical DTW can handle also. But same as DTW, none of
these above mentioned techniques can handle subsequence matching, which is needed for
Dataset-3 and Dataset-4. In this section (refer to Section 3.6.1), we have described a
simple and useful modification of classical DTW, which can handle subsequence matching
and we strongly think all of these above mentioned techniques can be well applicable for
subsequence matching. But this proposition has not been explored in this research work.
We would like to explore this proposition in near future.

3.6.1 Subsequence DTW (SSDTW)

This algorithm is designed for finding a continuous subsequence within a longer se-
quence that can optimally fit the shorter query sequence [Albrecht, 2009]. Classical DTW
is modified in order to be able to match a sequence with a subsequence of a longer
target sequence. It works by relaxing the boundary conditions of classical DTW. Let
X = (x1, x2, .....xp) and Y = (y1, y2, ....yq); q � p be the sequences of features. The goal is
to find the continuous indices from a∗ to b∗ of Y so that Y (a∗ : b∗) = (ya∗ , ya∗+1, ...., yb∗)
with 1 ≤ a∗ ≤ b∗ ≤ q that minimizes the DTW distance to X over all possible subse-
quences of Y . In other words: (a∗, b∗) = argmin

(a∗,b∗):1≤a∗≤b∗≤q
(DTW (X,Y (a∗ : b∗))). These

continuous indices of Y can be obtained by violating the boundary condition property
of classical DTW, i.e the formation of warping path (backtracking) can start from any
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column at the last row of path cost matrix and can end at any column at the first row
of path cost matrix. The path cost matrix (P) is initialized in the following manner.
P(1,1) = D(1,1);P(i,0)

1<i≤p
= P(i−1,0) + D(i,0);P(0,j)

1<j≤q
= P(0,j−1) + D(0,j);. The optimal distance

(V) is stored in the cell Cstart = [argmin{P(p,t)}]
1≤t≤q

. The backtracking for warping path

calculation, also starts from this particular cell, which ends at any cell in 1st row; i.e. at
Cend = [argmin{P(1,t)}]

1≤t≤q
.

3.6.2 DTW with Correspondence Window (DTW-CW)

Here a query sequence is matched against a subsequence of a target sequence using
a sliding correspondence window (same length as query). So the technique is a sliding
window (w) based approach with overlapping of (w − ζ). The width of sliding window
(w) in target sequence is typically equal to the length of query sequence. The position of
optimal subsequence within the target sequence is obtained by calculating DTW distance
between each slided window and the query sequence. Due to this repetitive way (calculation
of DTW on each slided window) of calculating best subsequence, DTW-CW is highly
computationally expensive.

Choosing the value of ζ could be troublesome for different applications. In the case of
word spotting applications, one possibility of automatically choosing ζ as the average width
of characters, belonging to reference word. It is meaningful for word spotting problem
to skip each time the width equals to average character width in sliding window based
matching. Otherwise ζ can be fixed heuristically, based on the properties of the datasets.

3.6.3 Meshesha-Jawahar DTW (MJ-DTW)

A DTW based partial matching technique, dedicated to word spotting is proposed
in [Meshesha and Jawahar, 2008b]. It can take care of variations at the beginning and at
the end of extracted sequences from segmented words. The correspondence of target and
query feature sequences can be concentrated at the end, at the beginning or both, when
the target word have pre and/or post conjugation, with respect to query word. Due these
sorts of concentration issues, the warping path deviates (from diagonal) in the horizontal
or in vertical directions at the beginning or end. It is note-worthy to mention that as the
matching path deviates from the diagonal line, the matching cost increases staggeringly.
Profiles from these pre and/or post extra characters have no or minimal contribution for
measuring similarity of the two words, so logically their cost needs to be cut down from the
total matching score. Hence, to reduce unwanted extra cost, this technique first analyze
whether the dissimilarity between words is concentrated at the end, at the beginning or
both. After performing the analysis, the extra cost at the two extremes are removed to
reduce the total matching score and to obtain the optimal dissimilarity value.
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3.6.4 Experimental Protocol and Results

The results of above mentioned three techniques on Dataset-1 and Dataset-2 are shown
in Fig. 3.9. Please note that ζ is taken as average character width for Dataset-1 and
(2× average stroke width) for Dataset-2. Average character width is calculated by obtain-
ing individual characters or glyphs by connected component labeling technique (CCL)2,
whereas average stroke width for handwritten characters is calculated by the technique
mentioned in [Chen, 2011]. To match a query word with pseudo words in Dataset-1, it
is logical to use average character width as the skipping/overlapping parameter (ζ) for
DTW-CW. By this way, it will be able to find approximatively the sequence of characters,
which will optimally match with the characters in query image. In the case of Dataset-2,
it is highly difficult to have a proper estimation of average character width (because it is
handwritten). So, we decided to consider stroke width as an approximation of character
width.

It is visible from the plots in Fig. 3.9a and Fig. 3.9b, that comparatively these three
algorithms have performed well enough but among them DTW-CW has slightly performed
better than other two in both the datasets. Whereas, SSDTW has minutely outperformed
MJ-DTW. Although DTW-CW has performed well, but it’s high computational cost due
to the exhaustive search for obtaining the best match is a bottleneck of this technique (see
Section 3.6.2). Moreover deciding the value of ζ is also a cumbersome process. Whereas
due to the inherent architecture of SSDTW, it is computationally inexpensive and also
able to provide comparative high accuracy. So it can be concluded that in these datasets,
the partial sequence matching approaches are more robust compared to the techniques
(e.g. MJDTW), which are able to handle pre and/or post conjugation of words. The
results on Dataset-1 is significantly lower than the ones in Dataset-2. Which implies that
subsequence matching techniques works well on improperly segmented words than properly
segmented ones. Likewise other reasons for this difference in accuracies are: presence of
noise, degradation effects, nature of the scripts (handwritten v/s machine printed) etc.
From the experiments on Dataset-1 and Dataset-2, we observed that all the three techniques
mentioned in this section have performed satisfactorily and almost equally. But to evaluate
the performance on the datasets of segmented lines (Dataset-3 and Dataset-4), we only have
experimented SSDTW and DTW-CW on these two datasets. Application of MJDTW is
irrelevant here as this technique is specifically designed for segmented words, for finding
pre and/or post conjugations of a word.

Fixing the skipping parameter for DTW-CW is a tedious task for the case of Dataset-3
and Dataset-4. Due to the complex script structure of Japanese language and historical
degradation effect on GW dataset, it is quite difficult to get the average character width,
as the segmentation of characters is highly difficult. So, we decided to find this threshold
by heuristic manner. We performed the experiments by increasing the value of ζ with a
gap of 5, i.e. ζ = 1, 5, 10, 15, 20, 25, 30 are considered. The process of increasing the value
of ζ were stopped when the accuracy start decreasing or become stable. Although from
the plot in Fig. 3.11a and Fig. 3.10a, it can be visible that the accuracy started decreasing
significantly from ζ = 10 but we continue to increase the value of ζ to verify whether any
strange behavior could occur or not (it didn’t occur). This analysis implies that, more

2https://en.wikipedia.org/wiki/Connected-component_labeling
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Figure 3.9: a) Performance comparison of DTW-CW technique for different values of sliding
width (AW) (see digitized version of the image for better clarity). b) Precision-Recall plot
for SSDTW.
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Figure 3.10: a) Performance comparison of DTW-CW technique for different values of
sliding width (AW) for Dataset-3. b) Precision-Recall plot for DTW-CW and SSDTW for
Dataset-3.

there is overlapping (ζ), better are the results.
It can be visible that the best result obtained with ζ = 1 but using ζ = 1 is highly time

consuming so we consider the value of ζ = 5 as the best trade off between accuracy and
speed. Although ζ = 10 could also be considered. The accuracy obtained by DTW-CW
(ε = 5 & 10) is comparable with the accuracy of SSDTW (minutely less than DTW-
CW). However SSDTW is computationally inexpensive in comparison with DTW-CW.
Although ζ = stroke width of the characters can also be directly considered here but just
to verify the effect of different thresholds, we performed the aforementioned approach. It is

84



3.6. FINDING SUBSEQUENCE WITH DTW

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
r
e
c
i
s
i
o
n

 

 

AW−1(0.736)
AW−5(0.734)
AW−10(0.727)
AW−15(0.703)
AW−20(0.702)
AW−25(0.679)
AW−30(0.625)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
r
e
c
i
s
i
o
n

 

 

SSDTW(0.7295)

(b)

Figure 3.11: a) Performance comparison of DTW-CW technique for different values of
sliding width (AW) for Dataset-4 (see digitized version of the image for better clarity). b)
Precision-Recall plot for SSDTW for Dataset-4.

noteworthy to mention here that ideally we should use a separate learning set for obtaining
the optimized value of ζ and this optimal value of ζ should be used for testing set. But as
we have only 4 queries in dataset-3, it is not feasible to divide these 4 queries into learning
and testing set. Moreover, for comparing the result of DTW-CW with other matching
techniques, it is necessary to use all 4 queries to evaluate all matching techniques on the
same experimental protocol. Due to the same reason, we performed experiment on all 15
queries of GW dataset also. The P-R curves are shown in Fig. 3.10b for Dataset-3 and in
Fig. 3.11b for Dataset-4.
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Figure 3.12: a) Performance comparison of different algorithms in this section on Dataset-5.
b) Performance comparison of different algorithms in this section on Dataset-6.

From the above shown experiments with Dataset-1 and Dataset-2, we saw that in
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Dataset-1 DTW-CW has outperformed other two techniques whereas MJ-DTW has per-
formed better than SSDTW. In the case of Dataset-2, although DTW-CW has again out-
performed the other two but in this dataset SSDTW has performed better than MJ-DTW.
By analyzing the algorithms on small datasets, we observed that the inter performance
difference is not very high and the accuracies are close to each other; i.e. all the three
techniques in this section have performed equally well.

After seeing the behavior on smaller datasets, we applied these algorithms on the large
dataset i.e. Dataset-5 and Dataset-6. The performance of these algorithms are shown in
following Fig. 3.12. It can be seen from these P-R plots that MJ-DTW has outperformed
others in both the datasets, whereas DTW-CW is the second best. Please note that for
the case of DTW-CW, we consider average stroke width as the parameter for overlapping
window size. As mentioned before also that DTW-CW do exhaustive search for finding
the optimal sub-sequence so even if other sub-sequence matching techniques has little bit
low accuracy but they are significantly computationally inexpensive than DTW-CW. The
best performance of MJ-DTW implies that searching pre and post conjugations of query
words are helpful for Dataset-5 and Dataset-6.

3.7 Other relevant sequence matching techniques

There are others relevant sequence matching techniques mentioned in the literature.
These methods were proposed to overcome some of the architectural drawbacks of DTW
by removing some constraints (especially boundary and continuity conditions), which helps
these techniques to skip outliers from query and/or target sequences. But on the contrary,
the many-to-one and one-to-many matching property of DTW is missing in the following
mentioned techniques.

3.7.1 Longest Common Subsequence (LCSS)

The longest common subsequence dissimilarity measure is an algorithm which is pro-
posed on the foundation of edit distance or Levenshtein distance measure, primarily used in
speech recognition domain. The basic idea is to match two sequences by allowing them to
stretch, without rearranging the sequence of the elements. LCSS also facilitates some ele-
ments to be unmatched or left out (e.g., outliers), whereas in Euclidean Distance and DTW,
all elements (even the outliers) from both sequences must be used for obtaining final dis-
tance between two sequences. The overall idea is to get the longest common sub-sequence
from the query and target sequences. The obtained longest common sub-sequence, does
not need to be made of consecutive points, but the order is preserved and some points can
be skipped from matching. Unlike DTW, one point can never be associated twice with
points of the other sequence, so the maximum number of correspondence is the smaller
length of the two sequences. The LCSS [Vlachos et al., 2003] measure has two parameters,
δ and ε. The constant δ, which is usually set to a percentage of the sequence length, is a
constrained warping band to control the window size for matching a given point from one
sequence to a point in another sequence. It controls how far in time, we can go in order
to match a given point from one trajectory to a point in another trajectory. The constant
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0 < ε < 1 is the matching threshold: two points from two sequences are considered for
matching, if their distance is less than ε. As, LCSS was originally proposed for symbolic
sequences (i.e. character strings), so to apply it for numeric values, a threshold is required
to determine when two close numeric values can be treated as equal or not. The perfor-
mance of LCSS is highly depends on the correct setting of this threshold, which may be a
particularly difficult problem in some applications.

By considering the ratio between the length of the calculated longest common subse-
quence and the length of the whole sequence, the dissimilarity between query and tar-
get sequence is calculated. Since the inherent goal of finding longest common subse-
quence is to find optimal substructure between two compared sequence, the problem of
LCSS is often solved with dynamic programming. Given two sequence X = x1, x2, ....xp
and Y = y1, y2, ..., yq, the length of their longest common sub-sequence, denoted as:
L (X,Y ); 1 ≤ i ≤ p and 1 ≤ j ≤ q; is calculated by:

Li,j =





0 if i = 0 and j = 0
Li−1,j−1 + 1 if |xi − yj | < ε and |i− j| ≤ δ
max(Li,j−1,Li−1,j) Otherwise

(3.23)

As, LCSS allows skipping elements of both the query and the target sequence, therefore
LCSS should be used when one is interested in finding the best matching part between
the target sequence and a given query sequence, since it guarantees that the whole query
sequence will be matched. When the query sequence contains outliers and skipping them is
allowed, then LCSS should be used. Li,j contains the similarity between X and Y , because
it corresponds to the length of the longest common subsequence of elements between time
series X and Y . To define the dissimilarity between X and Y , we can compute:

LCSS(X,Y ) =
p+ q − 2Lp,q

p+ q
(3.24)

According to this definition, this measure takes values from LCSS(X,Y ) =
p+q−2Lp,q

p+q to
1. For two trajectories of equal length it takes values from 0 to 1. Taking into account only
sufficiently similar points, LCSS solves the problem of the presence of noise, but does not
satisfy the triangle inequality [Vlachos et al., 2003], so it is not a distance metric. LCSS is
robust to noise and is expected to be more accurate than DTW in the presence of outliers.

3.7.2 Derivative based longest common sub-sequence

Let’s consider LCSS be the longest common subsequence dissimilarity measure between
two time series X and Y .
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3.7.2.1 1D-LCSS

Same as DDTW, in this approach, derivative of the signals are considered, instead of
the original ones for making LCSS more robust to noise [Górecki, 2014]. It proposes a
dissimilarity measure by considering both the function values of time series and values of
the first derivative is defined as:

1DLCSS(X,Y ) = a× LCSS(X,Y ) + b× LCSS(X̄, Ȳ ) (3.25)

where X̄ and Ȳ are the first discrete derivative of X and Y and a, b ∈ [0, 1] are parameters.
The discrete derivative of a time series X of length p is defined by: X̄(i) = X(i + 1) −
X(i); i = 1, 2, ..., p− 1

3.7.2.2 DD-LCSS

This is a dissimilarity measure, which considers both the function values of time series
and values of the first and second derivative is defined by:

DDLCSS(X,Y ) = a× LCSS(X,Y ) + b× LCSS(X̄, Ȳ ) + c× LCSS( ¯̄X, ¯̄Y ) (3.26)

Where, ¯̄X and ¯̄Y are the second derivatives ofX and Y and a, b, c ∈ [0, 1] are the parameters
[Górecki, 2014]. If the similarity measure in the above definition is a metric then the new
measure 1DLCSS and DDLCSS are also metrics.

3.7.3 Minimal Variance Matching (MVM)

This algorithm is designed to handle partial sequence matching and also to skip outliers
from target sequence. Minimal Variance Matching [Latecki et al., 2007b] combines the
strengths of both DTW and LCSS. MVM tries to find an optimal path including all query
points but it is able to skip outliers from target sequence during the matching process
(up to a given limit). MVM provides a relation R with an injection (1-1 mapping) from
X to Y . More precisely, each xi would map to exactly one yj , in an order preserving
manner, while some elements (considered outliers) would be skipped from matching with
query sequence. Due to this outliers skipping property of MVM, the influence of outliers
in Y on the dissimilarity value between X and Y can be eliminated. Hence, the query
sequence X is matched with only a part of Y , by this way, this method allows to sub-
sequence of Y , which optimally matches with query sequence X and the final dissimilarity
value is calculated between Y ′ and X. The given correspondence by MVM is a monotonic
injection.

f : {1, ....,m} → {1, ..., n}; where f is a function, such that f(i) < f(i+ 1) (3.27)
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Xi is mapped to Yf(i) for all i ∈ {1, ..., p}. The set of indices f(1), ...., f(m) defines
a sub-sequence Y ′ of Y . It is noteworthy here to mention that, in case of DTW, the
correspondence is a relation on the set of indices {1, ..., p} × {1, ..., q}, i.e. a one-to-many
and many-to-one mapping. Once the correspondence is known, it is easy to compute the
distance between functions.

D(X,Y, f) =

√√√√
m∑

i=1

(Yf(i) − ai)2 (3.28)

The optimal correspondence f̂ of values in series X to values in series Y is obtained by
calculating the global minimum of D(X,Y, f) over all possible correspondences of f : [f̂ =
arg min{D(X,Y, f)} : f is a correspondence]. Finally the optimal distance is obtained as
:

D(X,Y ) = D(X,Y, f) =

√√√√
m∑

i=1

(Yf(i) − ai)2 (3.29)

So, the above distance D(X,Y ) is the global minimum over all possible correspondences.

3.7.4 Optimal Sequence Bijection (OSB)

This algorithm extends the MVM [Latecki et al., 2007c] algorithm. It is particularly
suitable for partial and elastic matching as it can skip outliers present in query as well as
in target. In this way, OSB can also match a query longer than the target, which was not
possible with MVM. The goal of OSB is to find subsequences X ′ of X; (X ′ ∈ X) and Y ′

of Y ; (Y ′ ∈ Y ) such that X ′ best matches Y ′. Due to the possibility of having outliers
inside the sequences X and Y , skipping some elements of X and Y can be very crucial.
However, the freedom of skipping elements should also be restricted to prevent unnecessary
correspondences. To solve this purpose, a penalty of skipping is introduced, which is called
as "jumpCost", denoted as C. The distance between X and Y are kept inside the distance
matrix D. The optimal correspondence can be found by generating a DAG, using the
distance matrix D. The nodes of the DAG are all index pairs (i, j) ∈ {1...p} × {1...q} and
the edge cost W is defined as:

W{(i, j)(k, l)} =

{ √
(k − i− 1)2 + (l − j − 1)2.C + D(xk, yl) if i < k

∧
j < l

∞ otherwise
(3.30)

Thus, the cost of an edge from (i, j) to (k, l) is the Euclidean distance of vertices (i, j) and
(k, l) in the matrix {1...p} × {1...q} times the jump cost plus the dissimilarity measure of
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elements xk and yl.
Calculation of Jump Cost: The jump cost (C) for OSB is calculated by considering

the set of all target sequences (B) to which a query sequence should be compared. In the
first phase, the query sequence X is compared to a target sequence Y ∈ B, and we define:

C(X,Y ) = mean
i

(min
j

(D(xi, yj))) + std
i

(min
j

(D(xi, yj))) (3.31)

Thus, for every element xi, we find the closest element yj , and then we take the mean plus
one standard deviation (std) of the distances to the closest elements. In order to ensure
a fair comparison of sequence X to all target sequences Y ∈ B, the jump cost should
be fixed. This is obtained by simply taking the mean of all the jump costs: C(X) =
mean{C(X,Y )};Y ∈ B

3.7.5 Continuous Dynamic Programming (CDP)

CDP [Oka, 1998] is able to perform subsequence matching (finding full query in longer
target sequence) and to locate multiple occurrences of the query in the target series. For
detail on CDP3, please see [Oka, 1998]. The path cost matrix (P) of CDP is obtained in
the following way:

P(j, i)

∣∣∣∣
i=1

= 3×D(j, 1) (3.32a)

P(j, i)

∣∣∣∣
i=2

= min




P(j − 2, 1) + 2×D(j − 1, 2) + D(j, 2)
P(j − 1, 1) + 3×D(j, 2)

P(j, 1) + 3×D(j, 2)


 (3.32b)

P(j, i)

∣∣∣∣
3≤i≤p

= min




P(j − 2, i− 1) + 2×D(j − 1, i) + D(j, i)
P(j − 1, i− 1) + 3×D(j, i)

P(j − 1, i− 2) + D(j, i− 1) + D(j, i)


 (3.32c)

The output is obtained by A(j) = 1
3.pP(j, p). where P(j, p) is given by:

P(j, p) = min
(1≤i≤p, j≥β(i), β(i+1)≥β(i)

i=p∑

i=1

D(x(i), y(j − β(i))

The above defined formula has this specific initial condition: P(−1, τ) = P(0, τ) =∞. As

3The implementation of CDP, used here is taken from: http://www.diva-
portal.org/smash/get/diva2:347724/FULLTEXT01.pdf. Page no. 86
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it can be visible from Eqn 3.32, more resistance is present for the diagonal link of the DP
path compared to other two links 4.

3.7.6 Experimental Protocol and Results

To evaluate the performance of these sequence matching techniques, mentioned in
this section, we performed following experiments. The results on segmented words from
Dataset-1 and Dataset-2 are shown in Table 3.45 and Fig. 3.4. It is visible form the P-R
curves and the mAP values shown in Fig. 3.13 and Table 3.4 that LCSS family has sig-
nificant low accuracy compared to other matching algorithms. On Dataset-1, CDP has
outperformed all other techniques in both the datasets, whereas OSB has also performed
comparatively well. OSB is more stronger than LCSS for word image matching problems.
Most probable reason is the architecture of OSB, which is capable of skipping outliers from
query and target sequences. Along with it’s noise skipping property, the added jumpCost
for skipping some elements also plays a vital role in the performance of OSB. But high
computational complexity of OSB due to it’s inherent architecture, is a bottleneck for
exploring it on bigger dataset such as Dataset-5 and Dataset-6.

Method Name Accuracy (mAP)
LCSS 0.0354

1DLCSS 0.0489
DDLCSS 0.0489

OSB 0.2785
MVM 0.2026
CDP 0.3619

Table 3.4: Performance comparison of other
relevant techniques on GW-15 dataset
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Figure 3.13: Performance comparison of
other relevant techniques on Dataset-2

From the above explained experiments on Dataset-1 and Dataset-2, we see that the
4The above defined formula has the specific initial condition of P(−1, τ) = P(0, τ) = ∞. For imple-

mentation, two more rows are added at the beginning of distance matrix P, so the size of distance matrix
become (p + 2) × q. The initial two rows of P is filled up with inf and the above mentioned DP path
formation starts from τ = 3 which corresponds to the 1st; (τ = 1) row of the distance matrix D. At the
time of locating the indexes at target sequence, where the query sequence has maximally corresponded
with, we subtract the index values by 2, as initially the size of P matrix was increased by 2. There are
another way to consider the particular initial condition. In this case, the size of P remains same and the
initial two rows of this matrix are initialized with inf. It is seen that for our application, where the length
of target and query sequence is quite large and always greater than 2, these aforementioned two different
ways gives identical results.

5Please note that, the P-R plot of Dataset-1 is not shown because the accuracy of LCSS family (LCSS,
1DLCS, 2DLCSS) are very low compared to others. Due to this reason, when all the curves are put together
in one graph, the curve of LCSS family is difficult to visualize. So, we prefer just to provide the statistical
results.
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performance of LCSS family is significantly lower than others. So, for the case of Dataset-
3 and Dataset-4, we only tested other techniques except the LCSS family. The P-R plots
are shown in the following Fig. 3.14. Thanks to the special DP-path and associated weights
with these DP-Paths, CDP has outperformed MVM and OSB on both the datasets. That
is why, instead of having the ability of skipping noise, FSM and OSB does not show better
results than CDP. Whereas, thanks to extraction of slit style HOG based features from
these two datasets, local level variation and noise effects could be more controlled. One
of the main drawback of FSM and OSB is their inability to properly distinguish between
inlier and outliers elements, hence to decide whether to skip or not. Due to this problem,
FSM and OSB often takes wrong jumps of the inlier elements, whereas outliers are matched
with query signal.
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Figure 3.14: a) Performance comparison of other relevant sequence matching techniques
on Dataset-3. b) Performance comparison of other relevant sequence matching techniques
on Dataset-4.

In the above section, we observe that CDP has always performed better than all other
techniques in all of the 4 datasets, whereas OSB has also performed comparatively well
than others. But due to the high computational complexity of OSB, in this section, we
only performed the experiments with CDP algorithm. The corresponding P-R curves and
mAP values are shown in Fig. 3.15. The special DP-Paths and associated weights helps
CDP to perform well on properly segmented word images.

For better visibility of mAP values of all the above mentioned algorithms, these values
are mentioned in the following Table 3.5. The interesting performances by some specific
algorithm is highlighted. From Table. 3.5, it can be visible that depending on the na-
ture of the specific algorithms, most of these highlighted algorithms have shown credible
performances on multiple datasets.

In Table 3.6, time needed to do the matching for one query of GW (to be matched
over all words in the 10 pages) are reported. The experiments were performed, by using
Intel i7 processor and 4 GB RAM. MatLab-7.14 is used for implementing algorithms except
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Figure 3.15: a) Performance comparison of different DP paths on Dataset-5. b) Perfor-
mance comparison of different DP paths on Dataset-6.

Fast-DTW, in Java. For proper comparison, DTW was also implemented in Java. The
ample difference in time factor between the two implementations is properly visible. As
expected, we can see also that SC and Itekura Bands, as well as PDTW, are speeding
up DTW. Finally, OSB and DTW-CW are much slower, but CDP is faster. Please note
that intentionally, we have not shown the computation time of the remaining techniques
as those are not significant in current perspective.

3.8 Combination of aforementioned sequence matching tech-
niques

In this section, we present the approaches to combine different dynamic programming
based sequence matching techniques for word spotting. This kinds of approaches of para-
metrically combining two different technique have been studied by other researchers, in the
domain of time series matching [Górecki and Luczak, 2014] [Górecki and Luczak, 2015],
but have not been much explored in the domain of document image processing. After
observing the performance of different algorithms in the aforementioned section, we choose
the best performing algorithms to parametrically combining them for having improvement
in the result.

3.8.1 Constrained LDTW

We propose here to apply Pseudo Local DTW, constrained by Itakura parallelogram,
for taking advantages of both the techniques. This fusioning helps to reduce the time and
space complexity of LDTW and to avoid pathological matching similarly as for DTW. In
the experimental section, we will show that this simple fusioning of Itakura parallelogram
with LDTW improves the result to a good extend (3 to 4%). The corresponding pseudo
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Table 3.5: Comparative word spotting accuracy of all the above mentioned sequence match-
ing techniques on six datasets.

Technique Dataset-1 Dataset-2 Dataset-3 Dataset-4 Dataset-5 Dataset-6
0-Symmetric 0.3668 0.6449 × × 0.1323 0.3286

0-Asymmetric (classical
DTW)

0.4576 0.8503 × × 0.1573 0.4525

1-Symmetric 0.3074 0.6922 × × 0.1180 0.3533
1-Asymmetric 0.2188 0.220 × × 0.0166 0.0458
2-Symmetric 0.2038 0.5512 × × 0.0513 0.1788
2-Asymmetric 0.1936 0.2029 × × 0.0152 0.0417
3-Symmetric 0.4324 0.8515 × × 0.1702 0.4389
0.5-Symmetric 0.2776 0.7168 × × 0.1156 0.3901
0.5-Asymmetric 0.4642 0.8402 × × 0.1663 0.4224

SC-Band 0.5876 0.7961 × × × ×
Itakura Parallelogram 0.6017 0.8013 × × 0.2226 0.5265

DDTW 0.2180 0.5645 × × × 0.065
Value Derivative DTW 0.2265 0.6510 × × × ×
Weighted Hybrid DTW 0.3554 0.8621 × × 0.146 0.358

PDTW 0.3466 0.8929 × × 0.157 0.432
PDDTW 0.2563 0.9564 × × × 0.178
WDTW 0.3309 0.5854 × × × ×
WDDTW 0.2431 0.2319 × × × ×
LDTW 0.5374 0.7577 × × 0.229 0.499

Isometric Sin DTW 0.4213 0.6790 × × 0.102 0.335
Isometric Cos DTW 0.2426 0.5653 × × × ×

Isometric Hilbert DTW 0.5380 0.8907 × × 0.245 0.566
SSDTW 0.3349 0.8409 0.645 0.7295 0.1181 0.3276
DTW-CW 0.3603 0.8756 0.643 0.734 0.1358 0.3537
MJ-DTW 0.3413 0.7779 × × 0.1835 0.4370
LCSS 0.0354 0.1496 × × × ×

1DLCSS 0.0489 0.2006 × × × ×
DDLCSS 0.0489 0.2024 × × ×
OSB 0.2785 0.7982 0.3914 0.6089 × ×
MVM 0.2026 0.5168 0.3495 0.3970 × ×
CDP 0.3619 0.9176 0.7194 0.7473 0.1713 0.4354

Fast-DTW 0.4348 0.7806 × × × ×

code is given in Algorithm 3.

Algorithm 3: LDTW + Itakura Paralleogram
Input: p, q,D
Output: D

1 for i← 1 to p do
2 for j ← 1 to q do
3 bool = ITAKURA(i, j, p, q);
4 if bool then
5 Q(i, j)← LDTW (i, j,D);

6 D = D(p, q)/|wk| . The final distance
7 return;
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Table 3.6: Time required for finding one keyword in GW.

 Sr. No. Algorithm Name Time taken (Sec.) Algorithm Name 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

Classical DTW  
SC-Band  

Itakura Band 
0.5-Symmetric 

0.5-Asymmetric 
0-Symmetric 

0-Asymmetric 
1-Symmetric 

1-Asymmetric 
2-Symmetric 

2-Asymmetric 
3-Symmetric 

LDTW 

602.85 
170.08 
240.00 
672.98 
575.95 
608.55 
567.62 
618.24 
602.42 

611.033 
597.47 
519.43 
519.43 

397.24 
574.33 
155.28 
172.44 

1755.90 
810.50 
825.43 
649.19 

8474.15 
404.23 
245.30 
208.54 

2.62 
5.23 

SSDTW  
DDTW 
PDTW 

PDDTW 
DTW-CW 

WDTW 
WDDTW 

MVM 
OSB 

MJ-DTW 
CDP 
LCSS 

Fast-DTW 
DTW 

3.8.2 Parametric Combination of Matching Techniques

We propose a simple approach to parametrically combine different dynamic program-
ming based sequence matching techniques for word spotting. This was introduced for
general time series signal matching domain [Górecki and Luczak, 2015] but we adapted it
for word spotting purpose. In this section, the aforementioned matching algorithms are
pairwise combined for obtaining characteristic advantages from both techniques.

3.8.2.1 Parametric Distance Measure

Let’s consider two distance measures D1 and D2. A weighting based distance measure
(Dab) can be calculated as a linear combination ofD1 andD2, based on two real parameters
a, b ∈ [0, 1] [Górecki and Luczak, 2015].

Dab(X,Y ) = a×D1(X,Y ) + b×D2(X,Y ) (3.33)

It is noteworthy to mention that it is not needed to test all values of a, b ∈ [0, 1]. If a1 = ca2
and b1 = cb2, where c > 0 is a constant (i.e. the points (a1, b1) and (a2, b2) are linearly
dependent), then the following Eqn 3.34 is maintained by the selected parameters.

Da1b1(X1, Y1) S Da1b1(X2, Y2)⇔ Da2b2(X1, Y1) S Da2b2(X2, Y2) (3.34)

Due to this property of linear dependency, the parameters (a, b) can be chosen from any
continuous line between points (0, 1) and (1, 0). Let’s consider the case of straight line,
given by:

a = (1− α); b = α;α ∈ [0, 1] (3.35)

If the subset of parameter α is dense enough, the choice of parameterization should not be
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critical. It is shown in the following section that any two methods can be parametrically
combined by the above mentioned approach. For example, the parametric combination of
DTW and DDTW is named as parametric derivative DTW, which was proposed by Gorecki
et.al. in [Górecki and Luczak, 2015].

3.8.2.2 α–optimization technique

We also propose a way to obtain the weighting parameter from training samples (α).
This parameter α should be tuned during training phase, by using only small training
dataset. The requirement is to choose the best value of α, which gives highest mAP,
on the learning dataset. Please note that the technique of α optimization is inspired by
the technique mentioned in [Górecki and Luczak, 2015], but it is adapted according to
our requirements for word spotting. This optimization can be applied on various other
problems in the domain of document image processing and information retrieval.

To obtain the optimized value of α, first we select one query image Q1 from the training
dataset and we compute all distance values between this query and images from the target
image set (T s1). Now, for every parameter of α({α ∈ [0, 1]}), we compute the distance
function d1{T 1...s1},{1...p} = Dab(Q1, T

1...s1) for α1,...,p and put it’s value into a 2D matrix

D (with s1 rows and p columns). Now we sort (descending order) each column separately
of the D matrix, as each column here represents the matches for different α values. As
we have already the ground truth for this query image Q1, we calculate the precision and
recall (PR) values at each rank for every columns. Please note that, we need to compute
the distance measures D1(Q1, T

1...s1) and D2(Q1, T
1...s1) only once for all the values of

αt; 0 ≤ t ≤ p. Then for the next query image Q2 6= Q1 from the training set, we repeat
the procedure and obtain a new distance vector d2{T 1...s2},{1...p} = Dab(Q2, T

1...s2). Then

the same process of calculation of PR values is followed for each column of d2{T 1...s2},{1...p}
matrix. This process is repeated for all the query images in the learning set i.e. until
dq{T 1...sq},{1...p}, where q represents the total number of query images present in the learning
set. Now the idea is to find the best α1,...,p, among all the query images. So, we calculate
the mean average precision for each column (each α1,...,p) for all the query images. Hence,
we can get the best performing α on this learning set. After obtaining the optimized value
of α, this α value is applied on the test set to compute the accuracy of the system.

For a given value of α, the complexity of computation of distances between the n
elements E1, E2, ...., En is O(n2). As the calculations of the distance functions D1 and
D2 are the most time consuming part of optimization techniques, the computation time
depends only to a small degree on the number of considered values for α (specially for
large value of n). Due to this reason, it is possible to choose a large set of α values in
the optimization process without increasing the computation time of the parameter tuning
phase. If the minimum error rate is same for more than one value of α, the smallest α is
chosen. Here the set of α values is chosen from 0 to 1 with fixed step 0.01.
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3.8.3 Results

The accuracy of the proposed word spotting system is calculated in terms of mean
average precision (mAP)6 metric. In the following Table 3.7, we remind readers the mAP
of best performing algorithms, which were mentioned before. It can be visible that, con-
straining classical DTW by Itakura Parallelogram (DTW) shows significant improvement
in accuracy over DTW. Pseudo Local DTW, also shows significant improvement in accu-
racy over classical DTW, as previously observed. From the experimental results, we can
finally observe that the proposed fusioning of LDTW with Itakura parallelogram (LDTW)
also shows interesting performance. The mAP of the system for Bentham dataset is 0.524
and for GW dataset it is 0.276. So, no significant improvement is obtained for Bentham
dataset, compared to the performance of classical Itakura parallelogram but nice improve-
ment is achieved for GW dataset (+4,+7 %). One possible reason for this is that, inside
the band of Itakura parallelogram, LDTW’s different DP paths and associated weights
are not able to add extra values for the Bentham dataset because of less presence of noise
compared to GW dataset. Moreover, it can also be observed from the experiments that the
concept of piecewise aggregate approximations of signals (PDTW) does not show better
performance than classical DTW. Most probably the aggregation of local information by
agglomerating the features, extracted from single pixel width columns in not a good idea
for word spotting in hand written, historical dataset. Most probably, capturing the local
level variations in word image signals are important for word image matching. At last but
not least, SSDTW as well as CDP does not show better performance than DTW because
they are specially designed to find subsequences. Since we use well segmented word images
for the experiment, in such cases, classical DTW is more suitable choice than SSDTW or
CDP.

Table 3.7: mAP of different algorithms, applied on Bentham (1st row) and GW (2nd row)
dataset.

DTW PDTW CDP SSDTW DTW LDTW LDTW
0.45 0.43 0.44 0.33 0.52 0.499 0.524
0.178 0.157 0.171 0.118 0.229 0.229 0.276

After seeing the results of individual sequence matching techniques, in the following
section, we performed experiments with parametric combination of these individual tech-
niques. The rows and columns of Table 3.8 and Table 3.9, represents the result of paramet-
ric combination of different algorithms. The matching techniques, mentioned row wise in
Table 3.8 and Table 3.9 represents, D1 and the columns represents, D2 (see Eqn 3.33). To
evaluate the combined approaches independently to the choice of the learning set, learning
and testing steps are repeated 10 times. Each time 2 queries are randomly selected as learn-
ing set, for getting optimized value of α and then testing is performed on the remaining
query images. The Table 2 and 3 shows the average mAP obtained in this manner.

As visible from Table 3.8, the parametric combination of CDP & LDTW (0.279) and
DTW & LDTW (0.280) has performed well for the case of GW dataset. Similar kinds
of outcome are also visible for Bentham dataset. The parametric combination of CDP

6http://en.wikipedia.org/wiki/Information_retrieval\#Mean_average_precision
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Table 3.8: mAP of parameterized matching techniques for GW dataset
Table 2: mAP of parameterized matching techniques for GW dataset 

 DTW CDP LDTW SSDTW PDTW LDTW Itekura 
DTW  0.214 0.232 0.185 0.181 0.262 0.221 
CDP 0.205  0.237 0.162 0.194 0.279 0.238 
LDTW 0.239 0.244  0.229 0.234 0.277 0.254 
SSDTW 0.188 0.168 0.223  0.168 0.264 0.211 
PDTW 0.186 0.188 0.227 0.171  0.265 0.214 
LDTW 0.273 0.271 0.272 0.270 0.264  0.272 
Itekura 0.220 0.236 0.250 0.214 0.217 0.280  

Table 3: mAP of parameterized matching techniques for Bentham dataset 

 DTW CDP LDTW SSDTW PDTW LDTW Itekura 
DTW  0.468 0.496 0.436 0.433 0.529 0.503 
CDP 0.461  0.504 0.412 0.443 0.540 0.520 
LDTW 0.492 0.495  0.467 0.501 0.515 0.523 
SSDTW 0.410 0.410 0.477  0.416 0.508 0.511 
PDTW 0.434 0.462 0.489 0.422  0.533 0.506 
LDTW 0.543 0.519 0.514 0.518 0.552  0.536 
Itekura 0.503 0.529 0.522 0.511 0.510 0.539  

LDTW	  =	  LDTW+Itekura	  

Table 3.9: mAP of parameterized matching techniques for Bentham dataset

Table 2: mAP of parameterized matching techniques for GW dataset 

 DTW CDP LDTW SSDTW PDTW LDTW Itekura 
DTW  0.214 0.232 0.185 0.181 0.262 0.221 
CDP 0.205  0.237 0.162 0.194 0.279 0.238 
LDTW 0.239 0.244  0.229 0.234 0.277 0.254 
SSDTW 0.188 0.168 0.223  0.168 0.264 0.211 
PDTW 0.186 0.188 0.227 0.171  0.265 0.214 
LDTW 0.273 0.271 0.272 0.270 0.264  0.272 
Itekura 0.220 0.236 0.250 0.214 0.217 0.280  

Table 3: mAP of parameterized matching techniques for Bentham dataset 

 DTW CDP LDTW SSDTW PDTW LDTW Itekura 
DTW  0.468 0.496 0.436 0.433 0.529 0.503 
CDP 0.461  0.504 0.412 0.443 0.540 0.520 
LDTW 0.492 0.495  0.467 0.501 0.515 0.523 
SSDTW 0.410 0.410 0.477  0.416 0.508 0.511 
PDTW 0.434 0.462 0.489 0.422  0.533 0.506 
LDTW 0.543 0.519 0.514 0.518 0.552  0.536 
Itekura 0.503 0.529 0.522 0.511 0.510 0.539  

LDTW	  =	  LDTW+Itekura	  

& LDTW (0.540), DTW & LDTW (0.539) and LDTW & DTW (0.543) has performed
well. Please note that the accuracy (best until now, as far our knowledge is
concerned) of proposed technique has considerably outperformed the base line
accuracy of 0.407 for Bentham dataset, for segmentation based approaches7.
It can be observed that our system, based on classical DTW has also outperformed the
base-line system. Most probably, it is due to our pruning technique and selected column
based features [Mondal et al., 2014].

Table 3.10: Comparative word spotting accuracy of GW dataset.

Technique mAP
Proposed 0.28

[Wang et al., 2014b] 0.175
BOVW (see [Wang et al., 2014b]) 0.422

Pseudo-Struct (see [Wang et al., 2014b]) 0.072
Structural (see [Wang et al., 2014b]) 0.028

The accuracy of our system for GW dataset could be compared with the one in [Wang
et al., 2014b]. Although the used queries in [Wang et al., 2014b] are different than the
queries used in this chapter, the mAP obtained by DTW based system (see Table 1 in [Wang
et al., 2014b]) is almost equal to our DTW based system’s accuracy (0.178), shown in
Table 3.7. Hence, it can be asserted that our chosen queries are analogous to the queries
chosen in [Wang et al., 2014b]. Based on this conjecture, it is apparent that our system’s
accuracy is the second best among the notable state-of-the-art word spotting
methods, mentioned in [Wang et al., 2014b] (see Table 3.10).

7http://transcriptorium.eu/ icdar15kws/evaluation.html. Please note that the experiment was per-
formed only on validation set (not on test set). The ICDAR-2015 competition result is published only on
test set and the best reported result is 0.424 (mAP).
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3.9 Conclusion

In this chapter, different dynamic programming based matching techniques are explored
for word spotting. It is visible from the experiments that constraint based DTW and DTW
with different DP paths and weights can outperform classical DTW. It is visible from the
results on segmented words that piecewise aggregation of image features and transforming
the image features by several above mentioned transforms (e.g. Hilbert, Sin etc.) can
significantly improve the results. Weight based hybridization of original signals and their
derivatives are more effective for word spotting than taking only the derivative of the
signals. Moreover, it is also demonstrated in the chapter that parameterized combination
of various DP path based matching techniques can highly improve the accuracy. In future,
we would like to explore other dynamic programming based approaches for word spotting.
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Flexible Sequence Matching
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Abstract

In the previous chapter, we have investigated several sequence matching techniques for
word spotting. We have also discussed the pros and cons of these techniques. In this chap-
ter, a robust method is presented to perform word spotting in degraded hand written and
printed document images. A new sequence matching technique, called as Flexible Sequence
Matching (FSM) algorithm is introduced for this task of word spotting by analyzing the
drawbacks and advantages of other sequence matching techniques. The FSM algorithm
was specially designed by incorporating beneficial characteristics of other sequence match-
ing algorithms especially Dynamic Time Warping (DTW), Sub-sequence DTW (SSDTW),
Minimal Variance Matching (MVM) and Continuous Dynamic Programming (CDP). Along
with the characteristics of multiple matching (many-to-one and one-to-many), FSM is also
capable of skipping existing outliers or noisy elements, irrespective of it’s position in the
target signal. More precisely, in the domain of word spotting, FSM has the ability to
retrieve complete words or words containing only a part of the query. Furthermore, due to
it’s adaptable skipping capability, FSM is also less sensible to local variations in the spelling
of words, and also to local degradation effects within the word image. The multiple match-
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ing capability (many-to-one, one-to-many) of FSM helps it to deal with stretching effects
of query and/or target images. Moreover, FSM is designed in such a manner that with
little modifications, it’s architecture can be changed into the architecture of DTW, MVM,
SSDTW, and CDP. To illustrate these possibilities of FSM, we performed experiments on
incorrectly segmented words and on words with local spelling variations. We have also con-
sidered properly segmented lines of historical handwritten documents of different languages
and improperly as well as properly segmented words of type written and handwritten his-
torical documents. From the comparative experimental results of word spotting, it can
be clearly visible that the proposed FSM technique outperform other sequence matching
approaches except CDP. It is shown in the experimental section that although FSM could
not outperform CDP in overall statistical results (mAP) but it shows better individual
statistical results (mAP) than CDP for some certain queries.

4.1 Highlights on the Properties of Main Sequence Matching
Techniques

As explained in Chapter 3, numerous sequence matching methods have been proposed
till date. The most popular and most used one is Dynamic time warping (DTW) [Albrecht,
2009], [Itakura, 1975], [Niennattrakul and Ratanamahatana, 2007], [Yu et al., 2007], which
has shown promising results for time series classification and clustering because of it’s non
linear mapping capabilities. It has been widely used for comparing time series data for
data classification, clustering and word spotting. The main idea of DTW is to calculate
the distance between the time series by summing up the distances of their corresponding
elements. DTW yields an optimal (order preserving) relation R of all elements of sequence
x = {x1, x2, x3....xp} to all elements of sequence y = {y1, y2, y3....yq}. Dynamic program-
ming is used to find the best corresponding elements. It has been shown in literature that
DTW distance is superior to Euclidean distance [Vlachos et al., 2002] for many applica-
tions including word spotting [R. Manmatha, 2003]. Nevertheless some limitations exist
with classical DTW. Especially each element of x1..p must corresponds to some y1...q and
vice versa (one-to-one, one-to-many or many-to-one matchings). This hard constraint of-
ten forces DTW to perform correspondence with noisy elements, which could disturb the
matching and could also increase final distance value, especially in the applications, where
high amount of noise is present in signal, which particularly true for word spotting. Hence,
ranking of compared elements can be disturbed. Another problem arises when sequence x
corresponds to only a part y′ of the sequence y, DTW can not ignore the elements that
do not belong to y′ . To perform partial matching of sequences, some research have been
introduced in the literature e.g. SSDTW [Albrecht, 2009], which is designed to find a
continuous subsequence within a longer sequence that can optimally fit the shorter query
sequence. Another DTW based modification, called as "DTW with corresponding window"
(DTW-CW) [Latecki et al., 2007b], is able to perform partial sequence matching, using
a sliding correspondence window of same size as the query sequence. Although this ap-
proach can give high comparable accuracy, it is also highly time consuming, due to it’s
architectural structure. It also has similar drawbacks as DTW, especially the inability to
skip noise. Moreover, deciding the threshold for sliding the corresponding window is highly
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data dependent and a cumbersome process.
There are several variants of DTW exists in literature. Among these ones, some have

different architectural structure, such as Longest Common Subsequence (LCSS) [Vlachos
et al., 2002], Minimal Variance Matching (MVM) [Latecki et al., 2007b], Optimal Sequence
Bijection (OSB) [Latecki et al., 2007a],

times the jump cost plus the dissimilarity measure of elements ak 
and bl.  

OSB can be viewed as extension of DTW. To see this, observe 
that the edge weight dtw for DTW is defined as 
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This means that if i maps to j, then either k=i maps to l=j+1 or 
k=i+1 maps to l=j+1 or k=i+1 maps to l=j in the DTW 
correspondence. Thus, in comparison to DTW, OSB allows 
penalized jumps. We view as our main contribution the definition 
of the edge cost w in DAGs with a jump penalty that includes the 
jump cost defined in Section 3. 

The edge cost can be easily extended to impose a warping 
window constraint, i.e., we can limit the number of elements that 
can be jumped over in one step by setting a maximal value for the 
index differences k�i�1 and l�j�1.  

 
We illustrate the proposed method on a simple example. Figure 
3(a) demonstrates the correspondence found with OSB as a 
shortest path for two sequences  

X = (1, 2, 8, 6, 8) and Y = (1, 2, 9, 3, 3, 5, 9) 

with the distance between two elements being the squared 
difference. The corresponding sequence indices computed by 

OSB (not the values) are (1,1), (2,2), (3,3), (4,6), (5,7). Observe 
that the outliers Y4=Y5=3 are skipped. The automatically 
computed jump cost is C=1.15 (see Section 3). For comparison, 
DTW yields the sequence indices (1,1), (2,2), (3,3), (4,4), (4, 5), 
(4, 6), (5,7). Thus, X4=6 is forced to match to the outliers Y4=Y5=3 
in addition to the correct match of X4 = 6 to Y6=5. 

With the output of OSB we obtain a correspondence defined as a 
mapping on sequence indices 

f : {1,…,m} o {1,…,n} 

that is a monotonic injection, i.e., f(i) < f(i+1) for i � {1, …,m}. 
The sets of indices (ik) and (f(ik)) ik � {1, …, m} define the 
subsequences a' of a and b' of b, such that f restricted to (ik) is a 
bijection. This explains the phrase “subsequence bijection” in the 
Optimal Subsequence Bijection (OSB).  

To illustrate the benefit of the proposed one-to-one matching with 
skipping the outliers, consider again the matching of the two 
sequences shown in Fig. 1. The query sequence on top has two 
outlier elements (spikes), and the target sequence (at the bottom) 
has one outlier element. The proposed OSB method is able to skip 
them as shown in Fig. 1(b). For comparison, the correspondence 
obtained with the Dynamic Time Warping (DTW) shown in Fig. 
1(a) is significantly corrupted by the outliers. 

3. PENALTY FOR SKIPPING ELEMENTS 
In this section we describe how to determine the jump cost C. As 
we stated in Section 2, while in most applications d(ai, bj) is given 
for (i,j) � {1, …,m}u{1, …,n}, the jump cost should be carefully 
selected. We propose to compute the jump cost in two phases. 

                                          (a)                                                                                                                    (b)  
Figure 2. There is no penalty for skipping elements in LCSS, which often leads to accidental matches. The query sequence (top) is 
similar to the target sequence in (a) but not to the target sequence in (b). However, LCSS determines the length of the optimal 
subsequences as 73 in both cases. The three sequences represent planar contours of three different corpora callosa.  

                      (a)                                              (b) 
Figure 3. Time series alignment with (a) OSB and (b) 
DTW. 

Let B be a set of all target sequences to which query sequence a 
should be compared. In the first phase, the query sequence a is 
compared to a target sequence b � B, and we define 

))),((min(std))),((min(mean)C( jijijiji
badbada,b �  

Thus, for every element ai we find the closest element bj, and then 
we take the mean plus one standard deviation (std) of the 

Figure 4.1: In LCSS, there is no penalty for skipping noisy elements, which often generates
wrong correspondences. (a) The query sequence (top one) is similar to the target sequence
(bottom one) (b) the target sequence is different than the same query sequence. Although
the length of the optimal subsequences is 73 in both cases1.

To find an optimal correspondence between two sequences, a popular approach is
Longest Common Subsequence (LCSS) [Vlachos et al., 2002] [Vlachos et al., 2003]. Given
a query and a target sequence, LCSS determines their longest common subsequence i.e.
the sequence that best correspond with each other, allowing skipping from both sequences
(see Fig. 4.1). The dissimilarity measure is based on the ratio between length of longest
common sub-sequence and the length of the whole sequence. The elements of the subse-
quence do not need to be consecutive points, which could be a problem for word spotting.
Order of points is not rearranged and some points can remain unmatched. But to make
LCSS efficient, one needs to set a threshold that determines when values of corresponding
points would be treated as equal or not. There are no automatic approach to determine
this threshold value and it is always has to be settled manually [Das et al., 1997]. The
performance of LCSS is highly dependent and sensitive on correct setting of this threshold
value (see Fig. 4.1). Compared to euclidean distance, DTW and LCSS are more elastic,
supporting local time shifts and variations in the lengths of pairs of time series, but they
are also more expensive to compute.

1Figure is used in this thesis, with written permission from [Longin Jan Latecki, Suzan Koknar-tezel,
Qiang Wang, Megalooikonomou Vasileios, "Sequence Matching Capable of Excluding Outliers", In Pro-
ceedings of Workshop on Time Series Classification at ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining (KDD), 2007.]
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Figure 4.2: Alignment of query and target time series by a) DTW b) MVM2.

Figure 4.3: (a) MVM is able to generate the correct correspondence for a complete query
matched with part of target sequence. (b) DTW is not able to create correct correspondence
since it can not skip outliers elements2.

To overcome these restrictions of LCSS, Minimal Variance Matching (MVM) proposed
by Lateki et. al. [Latecki et al., 2007b]; by combining the strength of both DTW and
LCSS, while overcoming their constraints. MVM calculates the sequence similarity directly
based on the distances of corresponding elements (see Fig. 4.3). MVM also tries to find
an optimal path including all the corresponding pairs but MVM is able to skip outliers in
target during the matching process, hence it can handle partial matching and the calculated
optimal path including all the corresponding pairs does not need to be consecutive. The
notable difference between LCSS and MVM is that LCSS optimizes the length of the longest
common sub-sequence (based on the distance threshold), while MVM optimizes the sum of
distances of corresponding elements (without any distance threshold). LCSS is able to skip
both query and target elements whereas MVM can only skip target sequence. So, MVM
could be used only when the query sequence is smaller than target sequence and it is useful
to find the query in a bigger target sequence (see Fig. 4.3). For the case of word spotting,
this can be ideal condition, if we consider that the query image is perfectly selected and
there is no possible noise present inside. But when there are outliers in query sequence

2Figure is used in this thesis, with written permission from [Longin Jan Latecki, Vasileios Mega-
looikonomou, Qiang Wang, Deguang Yu, "An elastic partial shape matching technique", Pattern Recogni-
tion, 40(11), 2007. c© 2007 Elsevier.]
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and skipping these ones are necessary then MVM is not a good choice compared to LCSS.
Also both algorithms (LCSS and MVM) are only capable to do one to one correspondences
and are unable to perform many to one and one to many matching. Moreover, there is
no penalty for jumping some element in MVM, thus it does not create any resistance for
jumping some element. This complete freedom to jump, sometimes generate non-relevant
matching. MVM is also unable to differentiate between real noisy element and minor
degraded elements which could leads to unintuitive correspondence of elements.

(a) OSB (b) DTW

(c) LCSS (0.5 threshold) (d) LCSS (1.0 threshold)

Figure 1: The top and bottom sequences represent parts of
contours of two different but very similar bone shapes.The
correspondence obtained by the proposed OSB is shown in
(a). Observe how outliers corrupt the result of DTW in (b).
The correspondence obtained by LCSS with two different
thresholds in (c) and (d) are also mis-aligned.

of numeric values, one needs to set a threshold that deter-
mines when values of corresponding points are treated as
equal [19]. The performance of LCSS depends heavily on
the correct setting of this threshold, which may be a partic-
ularly difficult problem for many applications.

The proposed OSB computes the distance value between
two sequences based directly on the distances of corre-
sponding elements, just as DTW does, and it allows the
ignoring of outlier points on both the query and target se-
quences to find the best match, just as LCSS does. The main
difference between DTW and OSB is that, unlike DTW,
OSB can skip outlier elements of the query and target se-
quences when computing the correspondence. This makes
the performance of OSB robust in the presence of outliers.
Moreover, OSB defines a bijection on the matched subse-
quences, which means that we have a one-to-one correspon-
dence of the matched elements.

The main difference between LCSS and OSB is that
LCSS optimizes the length of the longest common subse-
quence and requires a distance threshold, while OSB op-
timizes directly the sum of distances of corresponding ele-
ments. Moreover, the OSB penalty for skipping consecutive
elements is proportional to the number of elements skipped,
thus skipping one outlier costs less than skipping a consec-
utive subsequence of several elements. There is no penalty
for skipping elements in LCSS, which often leads to acci-
dental matches as illustrated in Fig. 1c. As can be seen also
in Figs. 1c and 1d, the threshold chosen greatly affects the
resulting correspondence.

The main difference between OSB and assignment al-
gorithms, like the Hungarian algorithm [10, 15], is that
the Hungarian algorithm, as well as other assignment al-
gorithms, do not preserve the order of sequences.

OSB is a natural extension of Minimum Variance Match-
ing (MVM) [14]. MVM aims at finding a subsequence of
the target sequence that best matches the query sequence.
While MVM can avoid noise on the target sequence, every
element in the query sequence must be matched. This is a
serious limitation of MVM. In particular, it implies that the
length of the query sequence must be shorter than the length
of the target sequence. This problem has been corrected
in OSB. Moreover, the theoretical framework for OSB is
significantly different from the framework introduced for
MVM.

The paper is organized as follows. In Section 2 we in-
troduce our new method OSB together with its underlying
theoretical framework. In Section 3 we propose a method to
automatically compute the main parameter for OSB which
is the cost of jumping over an element of the query and/or
target sequence. In section 4 we discuss the time complex-
ity of OSB. Finally, in Section 5 we present the experimen-
tal evaluation of the performance of OSB on two types of
datasets: benchmark time series datasets and a shape con-
tour dataset. In particular, we show that OSB outperforms
DTW, LCSS, and the Euclidean distance.

2. Optimal Subsequence Bijection

The new algorithm, called Optimal Subsequence Bijec-

tion (OSB), works for the elastic matching of two sequences
of different lengths m and n:

a = (a1, . . . , am) and b = (b1, . . . , bn).

The goal of OSB is to find subsequences a′ of a and b′ of b
such that a′ best matches b′. Skipping (not matching) some
elements of a and b is necessary because both sequences
may contain some outlier elements. However, skipping too
many elements of either sequence increases the chance of
accidental matches. To prevent this from happening, we
introduce a penalty for skipping. We call this penalty the
jump cost and denote it with C. We describe one method to
compute the jump cost in Section 3.

We assume that the distance function d used to compute
the dissimilarity value between elements of sequences a and
b, i.e., d(ai, bj), is given for (i, j) ∈ {1 . . .m} × {1 . . . n}.
We do not have any restrictions on the distance function d,
and therefore, any distance function is possible. Usually,
for sequences of real numbers we simply have the distance
d(ai, bj) = (ai − bj)

2, which is also the case for our exper-
imental results reported in Section 5.

The optimal correspondence can be found with a short-
est path algorithm on a DAG (directed acyclic graph). The

Figure 4.4: The query (top) and target (bottom) sequences looks very similar but are
obtained from different sources. (a) The correspondence obtained by OSB; (b) by DTW,
which is unable to give correct correspondence in the presence of outliers. (c)(d) The align-
ment by LCSS with different threshold are also not able to provide good correspondences3.

To overcome these bottlenecks, another algorithm was designed by Lateki et. al., known
as: Optimal Subsequence Bijection (OSB) [Latecki et al., 2007c], which can ignore outliers
elements from query and target sequences. The distance between two sequences is also
given by the sum of distances of their corresponding elements (see Fig.4.4). The goal of
OSB is to find subsequence x′ from x and a subsequence y′ from y such that x′ best matches
y
′ , skipping some elements from x and y as both may contain some outliers elements. So,

by giving one to one correspondence, OSB is able to find the common sub-sequence between
query and target series. Unlike LCSS, it does not require any distance threshold. OSB
penalizes the distance for skipping consecutive elements proportionally to the number of
elements skipped thus skipping one outlier costs less than skipping consecutive successive
elements. Since there is no penalty for skipping elements in the case of LCSS, this makes it
vulnerable to accidental matches. The main difference between OSB and MVM is that OSB
can skip outliers from both the query and target sequences, whereas MVM can only skip
noise from target sequence. Also, as already mentioned, there is no penalty for skipping
in MVM. One crucial drawback of OSB is it’s high computational complexity. Another

3Figure is used in this thesis, with written permission from [Longin Jan Latecki, Suzan Koknar-tezel,
Qiang Wang, Megalooikonomou Vasileios, "Optimal Subsequence Bijection", ICDM, 2007.]
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crucial drawback in MVM, OSB, and LCSS is that, none of them support one to many
and many to one matching, contrary to DTW, which is comparatively robust in many
applications especially when there are some stretch present in either or both query and
target sequences. The following Tables. 4.1 and 4.2, summarizes the main properties of
different algorithms.

Based on previous conclusions, this chapter (next section) proposes a novel technique
which combines all the aforementioned facilities of MVM and DTW, along with some
special features, taken from OSB. Indeed our proposed technique is capable of skipping
outliers from target series, as MVM. So, it is able to find best corresponding elements from
target sequence by avoiding noise and allowing partial matching. Like DTW, our proposed
technique is also capable to perform multiple matching, which helps to handle the presence
of stretching and/or contractions in the signal. In addition, a penalty for skipping elements
of target sequence (as in OSB) is added to keep into account the amount of noise present.
This helps the algorithm to properly indexing target sequences with respect to the query
sequence.

4.2 Flexible Sequence Matching

The architecture of FSM4 is designed in such a manner, so that it can have all the
individual advantages of other sequence matching techniques into one. In this section,
the complete mathematical structure of FSM is described. Please note that the main
characteristics of FSM are presented in Table 4.1 and 4.2. FSM creates a relation R
between two finite sequences x (query) and y (target), of different lengths5 p and q: x =
(x1, x2, ....., xp) and y = (y1, y2, ....., yq); p ≤ q. The goal of the algorithm is to find y′(y′ ⊂
y) such that x best matches with y′ under given constraint. The relation R, is performed
on the set of indices {1, ....p}× {1, ....q}, where, one-to-one, one-to-many and many-to-one
mapping are possible. Based on the correspondence found, a distance between the two
sequences is computed. A theoretical description as well as an algorithmic description are
given in the following subsections.

4.2.1 Theoretical Description of FSM

The theoretical background of the FSM algorithm comes from both DTW and MVM
algorithms. We follow the same relational structure of DTW (one to one, many to one
and one to many matching) in order preserving manner, while the requirement for the
participation of all the elements of y in the relation R could be relaxed. It means, if
there are some noisy elements present in y then, they can be intelligently skipped by the
algorithm. This proposed modification of the algorithm allow us to limit the influence of
outliers in y, since x could find the best match with the sub-sequence y′ of y. Note that,

4Full implementation of FSM is available at : https://github.com/tanmayGIT/FSM
5Please note that, for FSM, the length of query sequence should always be less than or equal to the

length of target sequence. If the length of query sequence is longer than target sequence, then we can treat
the original query sequence as target and original target sequence as query, i.e. we just reverse the order
of input arguments in FSM function.
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Table 4.1: Characteristics of different sequence matching techniques

MN CS BC NC OS
DTW Each query element

has to be matched with
target elements without
skipping any elements
from target and query
sequence (and vice
versa).

Correspondence in-
volves every elements
of the target and query
sequence, including 1st

and last elements

One-One,
Many-
One,
One-
Many

Suitable for query and
target sequence similar
length.

SSDTW,
CDP

Partial sequence match-
ing is possible. Skip-
ping outliers only at the
end and beginning of
the target signal is pos-
sible.

Every query elements
are involved but the cor-
respondence with target
signal can start and end
at any position of the
target sequence.

One-One,
Many-
One,
One-
Many.

Unlike DTW and other
algorithm, No element
wise correspondences
are provided for CDP.

LCSS Skipping of query and
target elements are
possible (no skipping
penalty).

Correspondence be-
tween target and query
signal can start and
end at any position of
the query and target
sequence.

One-One Threshold to define
when two elements
are similar. Partial
sequence matching is
possible.

MVM Each query element has
to be matched with one
target element but not
vice versa. Skipping
is possible at any po-
sition of target signal,
i.e. at the beginning,
end and inside matched
sequence.

Every elements of query
signal are involved but
correspondences with
target signal can start
and end at any position.

One-One Query sequence has to
be smaller than target
and there are no skip-
ping penalty. Partial
sequence matching is
possible.

OSB Skipping of elements at
any position of query
and target signals are
possible (penalty is
added for skipping).

Same as LCSS One-One. Skipping penalty. Par-
tial sequence matching
is possible.

FSM Each query elements
has to be matched with
some target elements
but not vice versa.
Skipping is possible at
any position of target
signal.

Same as MVM. One-One,
Many-
One,
One-
Many

Skipping penalty.
Query length has to
be less than equal to
target length. Partial
sequence matching is
possible.

MN= Methods Name; CS = Continuity (Skipping); BC = Boundary Condition
NC = Nature or correspondence; OS = Other specificities.

1D time series signals are considered here. However, the extension to sequences of elements
corresponding to vectors of same dimension is straight forward.

First the difference matrix D is calculated using Euclidean distance Di,j=
√

(yj − xi)2;
1 ≤ i ≤ p; 1 ≤ j ≤ q. According to [Latecki et al., 2007b], there is no restriction on using
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Table 4.2: Comparison of Time complexities of different sequence matching techniques

Method
Name

Time Complexity (Where, p and q represents the sizes of sequences,
to matched)

DTW
[Albrecht,

2009]

The complexity of DTW is O(pq). It can be reduced to O(p) with Sakeo-
Chiba [Albrecht, 2009] and Itekura bands [Albrecht, 2009].

SSDTW [Al-
brecht, 2009]

Same as DTW

LCSS [Vla-
chos et al.,
2002]

Same as DTW

MVM [Late-
cki et al.,
2007b]

The complexity of MVM is O(pq2). But if "Corresponding window
bound" (refer to [Latecki et al., 2007b]) is introduced, the complexity
can be reduced to O(pq). Moreover, when the query sequence is to be
matched with complete target sequence, the complexity is reduced to
O(p).

OSB [Latecki
et al., 2007c]

The time complexity of OSB is O(p2q2). By imposing warping window
restriction on OSB, and by limiting the number of elements that can be
jumped, we can reduce the time complexity of OSB up-to O(p).

FSM [Pro-
posed]

The time complexity of FSM is Θ(3pq2) (see section 4.2.4).

various distance measures and any of the distance measure can be considered.
The obtained difference matrix6 D can be used to generate a directed acyclic graph

(DAG) denoted as G, where each of D’s elements can be considered as a node. The links
between each node and it’s child nodes is obtained by solving a shortest path problem in
this difference matrix, i.e. by using the cost function H defined in Eqn 4.2, where Du,k

matrix represents parent nodes and Di,j represents child nodes.

L = (k + 1) + elasticity − |k − u|; elasticity = |q − p| (4.1)

H(Du,k,Di,j) =

{
Di,j (i) if i = u+ 1 and k ≤ j ≤ L; (ii) if i = u and j = k + 1
∞ otherwise

(4.2)

In Eqn 4.2, any node, Du,k has the flexibility to be connected with other node Di,j in two
possible ways: ((i) and (ii)). The condition (i) says that, a parent node can be connected
with child nodes at the next row (i = u+1), at the same column or at the right (k ≤ j ≤ L),
up to certain user defined elastic limit 7 L, with respect to the position of parent node.

6Please note that the indexes of all the matrix notations used in this chapter, always start from 1.
7When q = p, the value of elasticity is taken as 2 to have the outliers skipping facility. If the value of
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This elastic limit (Eqn 4.1) represents the number of jumps that could be performed inside
the matched part of the target. By default, it is equal to the difference in size, between
the query and target sequence (|q − p|) minus the number of jumps already used, i.e. the
difference between column and row index of parent node: |k − u|. This constraint is not
mandatory but it limits the complexity of the algorithm. The connection at the same
column (k = 1) is mainly to ensure the many to one matching (link with the parent node
and the child node at the same column). The condition (ii) says that the parent node
can also be connected with the node just next to it, at the same row. This particular
connection, ensures the one to many matching facility. By this manner, we can generate
G (see Fig. 4.6).

Judging the intensity of noise, present in the signal is a difficult and puzzling problem.
Indeed, deciding, whether a particular element should be considered as an outlier (hence
skipping it) or not (hence matching it) is not straight forward. For example, in the case of
LCSS, the user need to define a threshold for this purpose. In FSM, these kind of threshold
is not required, but the system can not be allowed to skip outliers without any resistance.
Otherwise, the process can skip frequently/easily the elements, instead of matching them
with some acceptable dissimilarity cost. So, to limit skips, a skipCost is introduced for
penalizing skips. This penalty plays a vital role in distance computation and thus on
overall ranking of the closest matches in time series retrieval (e.g. word images retrieval).
To compute it for a specific problem, we randomly choose two query signals and for each
one, we randomly choose two target signals, which are similar to the query (e.g. for the
case of word image retrieval, word images which has same ASCII transcription as query).
After selecting query and target signal pairs, the distance matrix (D) between the feature
vectors of query and targets are calculated. A vector Mi=1..p is created to contain the
average of top m minimum values from each rows of D. The obtained vector Mi from each
query and target pairs are merged together and sorted in ascending order (Mmerged). To
have a good approximation of skipCost, we choose b% of the total number elements from
Mmerged and keep them in another vector called Mb

merged. After obtaining these b% (we
took b = 90, for our experiments) of total elements 8, the skipCost is then obtained by
calculating mean and standard deviation of Mb

merged (see Eqn 4.3). The idea of choosing
m minimum values is to have a cost that will not be null (and also give good approximation
of skip cost), when perfect matches are available between query and target sequences. It
also gives a better approximation of skipCost9.

∀ii=1,...,p, Mi = mean{top-m_min
j=1,...,q

(Di,j)};

S = skipCost = mean(Mb
merged) + 2× std(Mb

merged)
(4.3)

To perform the matching, the main objective is to find the shortest path from one initial
node D1,j , leading to Dp,l; l ∈ {p....q}, through G. The path cost (denoted as P(i, j); 1 ≤

elasticity becomes 0 then FSM would not be able to skip outliers and would behave similarly as DTW.
8Please note that if after considering the elements of a particular bin, the considered number of elements

exceeds 90% of total elements, then it is not a problem
9m = 2 is the minimum to consider but experimentally, taking m = 5 is less sensible and in acceptable

range, with respect to the size of our sequences. This parameter is not very important for the proposed
algorithm
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i ≤ p; 1 ≤ j ≤ q) is obtained by satisfying the following:

i) Starting at the 1st row between column 1 and q i.e. at D1,j for j ∈ {1...q} (this allows
to skip unnecessary prefix)10.

ii) Ending at the last row Dp,l; for l ∈ {p....q}, (to skip unnecessary suffix).

iii) The shortest path between each pair of reachable nodes in G can be found from P.

The following Eqn 4.4a says that the 1st row of the distance matrix D is copied to the
path cost matrix P. Each cell that belongs to the ith row is calculated (Eqn 4.4c) by first
choosing the possible parent nodes at previous row (i − 1) and at the columns k ranging
from ((i − 1) − elasticity) to ((i − 1) + elasticity). With respect to each of these parent
nodes, the child nodes can only belongs (according to the construction of G) to the next
row and at columns ranging from the next column (k + 1) with respect to parent node
until (k + 1) + elasticity − |k − (i − 1)|th column. Other possible links are for many-to-
one and one-to-many matching: the link just below (i − 1, j) to (i, j) is responsible for
one-to-many matching (see the blue link in Fig.4.5a) and the link just at left (i, j − 1) to
(i, j) is responsible for many-to-one matching (see the red link in Fig.4.5a). Please note
that in such cases, a small penalty (C = mean(Mmerged)) could be introduced to limit
the numbers of many-to-one and one-to-many matching. It is noteworthy to mention that,
in certain applications, many-to-one and one-to-many characteristics of FSM may not be
required. In such cases, the last two terms of Eqn 4.4b, could be ignored. The path
cost P(i, j) is updated only when there is a shorter path coming from a parent node. The
optimal structure condition guarantees that the returned matrix P, contains the cost of the
shortest path leading to every node. The total path cost between two comparable sequences
can be obtained by getting the minimum value stored at the last row and lth column of
path cost matrix P, where p ≤ l ≤ q. To obtain the distance between two sequences, we
normalize the dissimilarity value, through dividing it by the number of corresponding pairs
between the target and query sequence (length of the warping path)11.

P(1, j) = D1,j if 1 ≤ j ≤ q (4.4a)

P(i, j) =


min



{P(i− 1, k) + Di,j + (S× (j − (k + 1)))}

{P(i, j − 1) + C + Di,j}
{P(i− 1, j) + C + Di,j}


 if L


 (4.4b)

10Please note that to allow substring matching, these skips at the beginning and at the end are not
penalized (no skipCost added)

11Some other normalization technique has also been adapted; those normalization techniques are de-
scribed in the concerned experimental section
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Figure 4.5: (a) The illustration of one-to-many (blue) and many-to-one (red) matching
on toy examples. (b) Corresponding matching elements of the query and target vectors
(shown at the left).

L =




2 ≤ i ≤ p
max[1, (i− 1)− elasticity] ≤ k ≤ min[q, (i− 1) + elasticity]

k + 1 ≤ j ≤ min(q, (k + 1) + elasticity −max(0, {k − (i− 1)}))


 (4.4c)

FSM creates a relation R from two finite sequence x (query) to y (target) of differ-
ent lengths p and q: x = (x1, x2, ....., xp) and y = (y1, y2, ....., yq); p ≤ q. To align these
two sequences using FSM algorithm, a difference matrix (D) of size q × p is constructed,
where D(i, j) is the distance between xi and yj . A warping path W is a contiguous set
of matrix elements that define a mapping between the series X and Y . The kth ele-
ment of W is defined as Wk = (i, j)k. The complete warping path is then defined as
W = W1,W2,W3, ...,Wk, ...WK ; p ≤ K ≤ q + p − 1. The upper bound of maximum
number of elements possible (q+p-1) in warping path (W) of FSM is rationalized from the
mathematical rationale of DTW, which also maintains the same upper limit.

Generally the warping path also follow some constraint:

i. Boundary Condition : FSM does not maintain the boundary condition of classical
DTW and able to do partial sequence matching. The warping path can end at
any particular column of the last row, ranging from the index p to q., i.e. Wk =
(p, t); p ≤ t ≤ q and the warping path can start at any column, at the first row, i.e.
W1 = (1, u); 1 ≤ u ≤ q.

ii. Continuity Condition : The continuity condition of classical DTW is also not
maintained by FSM: Wk = (a, b) is followed by Wk+1 = (a′, b′); where (a′−a) ∈ [0, 1]
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D1,1 D1,2 D1,q

D2,1 D2,2 D2,L D2,L+1 D2,q

D3,1 D3,2 D3,q

Dp−1,1 Dp−1,2 Dp−1,q−1 Dp−1,q

Dp,1 Dp,2 Dp,q−1 Dp,q

. . .

. . .

. . . . . . . . .

. . .

. . .

. . .

. . . . . .

Figure 4.6: DAG constructed using a distance matrix obtained from two sequences.

and (b′ − b) ∈ [0, 1, ...|q − p| + 1]. Due to this characteristic, FSM is able to jump
outliers from the target signal.

iii. Monotonicity Condition : The monotonicity condition restricts the warping path
from going back in time: Wk = (a, b), Wk+1 = (a′, b′) is constrained by (a′ − a) ≥ 0
and (b′ − b) ≥ 0.

Depending on the requirement, the final distance can be normalized by two different ways.

i. The final distance stored in the cell Pp,I can be normalized by the total number of
correspondences. Let’s say the normalized distance is denoted by d̄, so d̄= Pp,I

|W| ; |W| =
The size of W matrix.

ii. The other way of normalization is to divide by: total number of correspondence +
total number of elements, skipped at the begging and end; i.e.
d̄ = Pp,I

|W|+{{W(cnt−1,1)−1}+{q−W(1,1)}} (please see line 30-31 of Algorithm 4)

4.2.2 Description of the Proposed Pseudo Code

As an output, the algorithm provides the path costs in P matrix along with two other
matrices (R and C ), which are used to backtrack the shortest path, giving the closest
correspondence between query and target elements. The matrix R keeps track of rows
and C keeps track of columns and the array W merge these indexes to get the path. The
overall process is given in Algorithm 4. The first row of the matrix P is obtained by Eqn

4.4a. All the other cells of P are initialized with infinity. The cells of the path cost matrix
(P) are calculated (refer to lines 5− 26) by iterating i over each row where k iterates over
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Algorithm 4: Flexible Sequence Matching
Input: p(int), q(int),Dpq(double),S(float),C(float)
Output: Ppq(double),W(vector < double >)

1 P←∞ . Initialize all the cells of P matrix by ∞
2 elasticity ← |q − p| . If the value of elasticity is not provided
3 for j ← 1 to q do
4 P(1, j)← D(1, j) . Fill the 1st row of P with the 1st row values at D matrix

5 for i← 2 to p do
6 if i = 2 then
7 R← q . Complete flexibility is given for choosing the 1st node
8 L← 1

9 else
10 R← min(q, (i− 1) + elasticity)
11 L← max(1, (i− 1)− elasticity)

12 for k ← L to R do
13 D ← ((k + 1) + elasticity)−max(0, {k − (i− 1)})
14 for j ← k to D do
15 if j = k then
16 J ← C . Penalty for vertical links
17 else if j = k + 1 then
18 J ← 0 . No penalty for diagonal links

19 else
20 J ← S× {j − (k + 1)} . Penalty proportional to number of jumps

21 if P(i, j) > (P(i− 1, k) + D(i, j) + J ) then
22 P(i, j)← (P(i− 1, k) + D(i, j) + J ) . Link between two rows
23 R(i, j)← i− 1; C (i, j)← k

24 if P(i, j) > P(i, j − 1) + C + D(i, j) then
25 P(i, j)← P(i, j − 1) + C + D(i, j) . Link from left node
26 R(i, j)← i; C (i, j)← j − 1

27 I = argmin
p≤t≤q

P(p, t) . Column index of last row with the minimum value

28 r = p; c = I; cnt = 1
29 while ((r ≥ 1)&(c ≥ 1)) do
30 W(cnt, 1) = r;W(cnt, 2) = c . Storing the cell indexes in the array for getting

the warping path
31 t = C (r, c); r = R(r, c); c = t; cnt+ +

parent nodes at row (i-1) and j keeps track of child nodes. For calculating the cells of a
row, firstly the range of parent nodes are calculated (line 5-11). When i = 2, parent nodes
can be anywhere in first line to allow to skip irrelevant part (at no cost) at beginning of
target. Next, for each parent node from L (left) to R (right), the possible connections with
child nodes are calculated by j, which is iterated between k and D and takes into account,
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many-to-one, one-to-many matching as well as jumps.
The multiple matching facility of FSM i.e. many consecutive elements of the query

to one element of target (refer to Algorithm 4, line 14) and one to many (refers to Al-
gorithm 4, line 24-27) is achieved along with the property of one to one matching. Note
that, jumpCost(J ) is calculated based on number of skips already taken ((j − (k + 1))
term in line 20 of Algorithm 4) and skipCost(S) (see line 20 of Algorithm 4). When the
parent node at (i−1, k) is connected with the node at (i, k+1), no jumps are taken in this
case, hence two consecutive elements of query are matched with two consecutive elements
of target sequence. The process for calculating the warping path is shown in line 27-31.
Initially the index of the column, ranging from p to q, containing minimum value at the
last row of the path cost matrix is determined. Then a back tracked warping path (W) is
obtained by iterating through the while loop.

4.2.3 Examples of matching with FSM

Using some toy examples, the behavior of FSM, compared to DTW and MVM is demon-
strated in Fig. 4.7. The following Fig. 4.7a, 4.7b, 4.7b shows that, for the case of DTW,
the 1st, 2nd and 3rd elements of query are correctly matched with 1st, 2nd and 3rd elements
of targets, respectively. But the 4th element (8) of query is forced to be matched with 4th

element (95) of target. The last element of query is also forced to be matched with other
remaining elements of target (many-to-one matching), which significantly increases the fi-
nal distance. MVM algorithm is able to improve the matching process by skipping outliers
elements, ([95, 79]) from the sequence. But one can notice that the choice of outliers/in-
liers in questionable (elements 26 and 31 could also be considered as outliers considering
values of query). This is mainly because of it’s inability to have many-to-one matching
and it’s restriction that the numbers of matched elements from target sequence should be
equal to number of elements in the query, compels the algorithm to match the 4th and 5th

elements of Q with the 6th and 8th elements (26, 31) of target. On the contrary, it can be
easily visible that FSM can overcome these restrictions and can give right correspondence.
In such case, small cost will minutely penalize the distance for one to many matching.
In Fig.4.7d, we can see that DTW matching gives several wrong correspondences mainly
due to it’s inability to skip noisy elements. Due to the inability of having many to one
correspondences and the hard constraint of finding same amount of elements from target
sequence, with respect to the length of query sequence, MVM algorithm is also compelled
to match with noisy elements. The FSM algorithm has overcome both of these bottlenecks
and it is able to provide good matchings between the sequences, thanks to it’s noise skip-
ping ability. It is noteworthy to mention here that since the length of target and query
signal are same, the elasticity for MVM and FSM algorithm is taken as 2, for having the
benefits of outliers skipping from target signal. The clear interest of FSM and MVM over
DTW can also be visible in Fig. 4.7g 4.7h 4.7i. While DTW matching drastically fails to
find the right correspondences, MVM and FSM are able to give the right correspondences
by skipping noisy elements.
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(a) DTW (b) MVM (c) FSM

(d) DTW (e) MVM (f) FSM

(g) DTW (h) MVM (i) FSM

Figure 4.7: Study of partial matching, many-to-one and one-to-many matching and noise
skipping abilities of (a)(d)(g) DTW, (b)(e)(h) MVM and (c)(f)(i) FSM.

4.2.4 Time complexity of FSM

The worst case complexity of FSM is calculated by computing total number of possible
parent nodes at each row of P matrix. In worst case, we would have a subset of at most
{(2×|q−p|)+1} parent nodes (see line 10, 11 of Algorithm 4).) at each row of P(i, j)(1 ≤
i ≤ p; 1 ≤ j ≤ q) matrix; which indeed can be represented as the vertices of DAG G. Then
for each of the parent nodes in row i is linked to at most T child nodes. Since there are
total p rows, the algorithm complexity could be defined by: [p×{(2× |q− p|) + 1}×T ].

T = [{(j+1)+ |q−p|}−(j+1)]+1−(j−i)+1+1 = |q−p|+(j−i)+3 ≈ |q−p|+3 (4.5)

In Eqn 4.5, the term (j−i) can be ignored (it reduces the complexity) for performing worst
case analysis. The term 3 comes from adding the diagonal link, link with the right child
node on the same line as parent node and the child node just below parent node (see line 13
of Algorithm 4). The worst case complexity of FSM is Θ([|q−p|+3]×[p×{(2×|q−p|)+1}]) =
Θ(2.p × ((|q − p| + 2)2 − 1)) ≈ Θ(2.p × (|q − p| + 2)2). This assumption is also true
: Θ((2.|q − p|2).p) < (Θ(2.q2.p). Furthermore the complexity can be reduced to linear
(Θ((2.|q − p|2).p) ≈ Θ(p) when q ≈ p; i.e. matching whole target)). The time complexity
of FSM can further be reduced by introducing an admissible lower bound. However, in
this work we focus on demonstrating the utility of FSM; we will address speedup and
index-ability of FSM in future work.

4.3 Generalization property of FSM

The architecture of FSM is general enough so that, with little modifications, it can be
easily tuned to perform as other sequence matching algorithms.
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4.3.1 Achieving DTW behavior from FSM (DTW-FSM)

The architecture of FSM can be easily tuned to perform as DTW, which can give
completely identical results (see experiments in Section 4.4.1.1 and Fig.4.8a)12. The main
idea here is to follow the same DP path as DTW and to restrain the skipping facility of
FSM (see algorithm 5). The required changes are following :

i) Initialization portion (line 2 to 4) of Algorithm 4 is replaced by lines 2, 2.1, 3 and 4
in Algorithm 5. Here the elasticity and skipCost are taken as zero as in DTW, there
are no possibility of skipping elements.

ii) The parent nodes are looped through all the columns of the array (line 6-11 of Algo-
rithm 4 is replaced by line 4 in Algorithm 5). In DTW, the DP path is constructed
through all the cells of every row of the dissimilarity matrix (D).

iii) Consider the sequence dissimilarity value from bottom right most cell of path cost
matrix and backtrack the warping path from this cell and up to the top left most cell
(replace the line 28 of Algorithm 4 by line 28 of Algorithm 5).

iv) The final dissimilarity value is normalized by dividing the path cost value at the
bottom right cell of P matrix by total number of correspondence between query and
target sequence. The number of entries in warping path W, gives total number of
correspondence.

To show that DTW-FSM performs identical as classical DTW, we performed experiments
on GW dataset. As the GW dataset contains only segmented line information, so instead
of classical DTW, we choose SSDTW for the experiments. Likewise, the P-R curve is
compared against SSDTW-FSM12 (refer to Section 4.3.4). Please note that, architecturally
SSDTW and classical DTW are same and the only difference is in the process of calculating
their respective warping paths. So, it is obvious that DTW vs. DTW-FSM would perform
same as SSDTW vs. SSDTW-FSM and it is not necessary to show the separate plot of
DTW vs. DTW-FSM.

12 The proposed generalization property of FSM is demonstrated by plotting the curve only for GW
dataset (not for other two datasets), by using first 2 queries (see Table 4.3) instead of total 15 queries.
However, we maintained the same experimental protocol, mentioned in the last portion of section 4.4.1.1,
i.e. all the occurrences are used for each of these 2 query images, for calculating mAP value.

116



4.3. GENERALIZATION PROPERTY OF FSM

Algorithm 5: DTW alike FSM
Input: p, q,D,S,C
Output: P,W

1 P←∞
2 elasticity ← 0;S = 0;C = 0. No skipping

2.1 P(1, 1)← D(1, 1)
3 for j ← 2 to q do
4 P(1, j)← D(1, j) + P(1, j − 1)

5 for i← 2 to p do
10 R← q
11 L← 1
12 for k ← 1 to q do
13 D ← (k + 1)
14 for j ← k to D do

....
20

23

26
. Warping path starts from bottom right most cell

28 r = q; c = p; cnt = 1
....
....

Algorithm 6: MVM alike FSM
Input: p, q,D
Output: P,W

1 ....
2 ....
5 for i← 2 to p do

10 R← max(1, {(i− 1) + elasticity})
11 L← min(q, (i− 1))

12 for k ← L to R do
13 D ←

(k+1+elasticity)−max(0, |k−(i−1)|)
14 for j ← (k + 1) to D do
21 if P(i, j) > P(i− 1,K) + D(i, j)

then
22 P(i, j)← P(i− 1,K) + D(i, j)
23 R(i, j)← i− 1; C (i, j)← k

27 I = argmin
p≤t≤q

P(p, t)

28 r = p; c = I; cnt = 1
.....

4.3.2 Achieving MVM behavior from FSM (MVM-FSM)

Attaining the MVM architecture from FSM, is quite easy since FSM is developed on the
basis of MVM algorithm (see Fig.4.8a)12. Interested readers are requested to see [Latecki
et al., 2007b] for detailed description on MVM. The required changes are as follows (see
Algorithm 6): i) Restrict the limit of parent node (replace line 6-11 in Algorithm 4 by line
10-11 in Algorithm 6). ii) For each parent node, the child node always start from diagonal
position (see the line 14 in Algorithm 6). iii) The portion, responsible for horizontal
link of the dynamic programming (DP) path for FSM is removed here (the line 24-26 of
Algorithm 4 are removed here). The final dissimilarity value is normalized here by dividing
through the total number of query elements.

4.3.3 Achieving CDP alike behavior from FSM (M-CDP-FSM)

The continuous dynamic programming algorithm is described in Section 3.7.5 of Chap-
ter 3. It can be visible from DP path of CDP that, more resistance is present for the
diagonal link of the DP path compared to other two links. For our application, we inves-
tigated the effectiveness of this particular DP path. To do that, we changed the DP path
in following manner and named this modified version as Modified CDP (M-CDP).

P(j, i) =





∞ if 1 ≤ i ≤ p; j = 1, 2
D(j, i) if i = 1; 3 ≤ j ≤ q

min




P(j − 1, i− 1) + D(j, i)
P(j − 1, i) + D(j, i)
P(j, i− 1) + D(j, i)


 if 1 < i ≤ p ; 3 ≤ j ≤ q

(4.6)
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The output is obtained by A(j) = 1
pP(j, p). In such way, CDP uses same DP path as

DTW and experiment (see experiments in Section 4.4.1.1 and Fig. 4.8b, Fig. 4.8c) shows
minor declination of accuracy. So, it can be concluded that the original DP path of CDP
along with it’s respective weights has some positive impact.

CDP architecture [Oka, 1998] can also be achieved by the following modifications of
FSM algorithm. Nevertheless, the original DP path of CDP can not be realized in this
adaptive version of the algorithm. So, we used the modified version of CDP (M-CDP),
which uses the simpler DP path of classical DTW. This allows us to compare modified
CDP (M-CDP) with FSM turned into CDP alike behavior (see Section 4.4.1.1 and Fig.4.8c
& 4.8b). The following modifications are performed in Algorithm 7) to achieve CDP alike
behavior.

i) As for CDP, no skips are possible, so elasticity and skipCost are assigned to zero (see
line 2).

ii) Contrary to other afore mentioned algorithms, for CDP architecture, we use target
elements along rows and query elements along column wise (line 11 and 12).

iii) k is iterated over all parents (see line 12 in Algorithm 7 and notice that line 6-11 of
Algorithm 4 are removed here).

iv) As, no skips are possible, so line 13 of Algorithm 4 is changed here.

v) Line 15-20 replaces the corresponding ones in Algorithm 4 to take into account the
DP-Path of modified CDP.

vi) See the variable I, mentioned in line 30, stores the normalized distances, which are
obtained by dividing the path cost values by the length of reference sequence (p).
The minimum value of I gives the indexes of sub-sequence (of target signal), which
has optimal match with reference sequence and the final dissimilarity cost between
the target and query sequences. So, there is no back track neither other distance
normalization (lines 27-31 in Algorithm 4 are removed).

4.3.4 Attaining Subsequence DTW alike architecture from FSM (SSDTW-
FSM)

FSM can also be easily modified to act like SSDTW algorithm. The detailed descrip-
tion on SSDTW is given Section 3.6.1 in Chapter 3). For generating sub-sequence DTW
architecture from FSM, we simply follow the same technique mentioned in Section 4.3.1 by
keeping into mind the aforementioned special constraint of sub-sequence DTW. The process
of calculation of warping path is same as FSM and the rest of the part before the warping
path calculation portion would remain same as in Algorithm 5. The final dissimilarity
value (4(x, y) is normalized by dividing through the length of the warping path (same as
in Algorithm 5).
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Algorithm 7: CDP alike FSM
Input: p, q,D,S,C
Output: P,W

1 P←∞
2 elasticity ← 0;S← 0;C← 0
3 for j ← 1 to p do
4 P(1, j)← D(1, j)

5 for i← 2 to q do // Target elements are considered row-wise in path cost matrix.

12 for k ← 1 to p do // Query elements are considered column-wise13 The loop for -

13 D ← min(k + 1, p) // - parent nodes are iterated for all query elements.

14 for j ← k to D do // Calculation of child nodes are same as DTW

15 if j = 1 then
16 P(i, j)← D(i, j) // 1st column is copied from distance matrix.

17 else
21 if P(i, j) > (P(i− 1, k) + D(i, j)) then
22 P(i, j)← (P(i− 1, k) + D(i, j))
23 R(i, j)← i− 1; C (i, j)← k

24 if P(i, j) > P(i, j − 1) + C + D(i, j) then
25 P(i, j)← P(i, j − 1) + C + D(i, j)
26 R(i, j)← i C (i, j)← j − 1
27

28

29

30

30 I(i, 1) = P(i, k)/k
32

4.4 Experimental Evaluation

The experimental section is divided into two categories: i) Line segmentation based
word spotting, ii) Pseudo-word segmentation based word spotting. Depending on the char-
acteristics of the documents, it can be comparatively easier to perform word segmentation
or line segmentation. For example, if inter word gap is not significant enough (e.g. old his-
torical documents), word segmentation can be very difficult. This segmentation difficulty
is highly script, writer and language dependent. In many cases, results of line segmenta-
tion can be better than the results of word segmentation especially for old manuscripts.
The advantage of line segmentation based approach is that it can be possible to spot
hyphenated words spanned into two lines. In most of the languages, an acceptable line
segmentation result can be obtained by simple "pixel projection along the text line direc-
tion". But, line segmentation is also difficult, when there is a high amount of warping, slant
or high degradations. In such cases, line segmentation could be more difficult than word
segmentation. Moreover, thanks to the properties of proposed FSM techniques, it does not
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need perfect word segmentation. So, FSM is able to spot words on pieces of lines/words
(pseudo words). Thus due to these pros and cons of both segmentation techniques, we have
performed the experimental evaluations on both segmentation approaches, to evaluate our
proposed technique i) on segmented lines ii) on pieces of lines/pseudo words.

4.4.1 Results on Segmented Lines

The experiments in this category are performed on two historical handwritten, datasets;
George Washington(GW) and Japanese dataset. GW dataset has 675 text lines. These
well segmented text lines are obtained from [Terasawa and Tanaka, 2009]. The Japanese
dataset comes from the manuscripts of "Akoku Raishiki (The diary of Matsumae Kageyu)".

4.4.1.1 Results on GW dataset

To perform the experimentation with George Washington dataset, 15 query images are
used (see Fig. 4.9a). These are the same query images, as the one already used in [Leydier
et al., 2007], [Terasawa and Tanaka, 2009] (see Table.4.3 ). We used the same segmented
lines, ground truth and slit style based HOG feature values for these two datasets as the
one used in [Terasawa and Tanaka, 2009]. These segmented lines are pre-processed for noise
removal, skew and slant correction. All of these data are availed by the authors of [Terasawa
and Tanaka, 2009]. The protocol for accuracy calculation, is minutely different for our case
in comparison with the one mentioned in [Terasawa and Tanaka, 2009]. Consequently,
the only difference between results from [Terasawa and Tanaka, 2009] and ours comes
from the matching algorithm (CDP14 15 vs. FSM) and from the difference in accuracy
calculation protocol. Most probably these following mentioned reasons are responsible
for this difference in results of their implementation of CDP based word spotting system
and our implementation of CDP based system: i) No detailed information is provided
in [Terasawa and Tanaka, 2009], about the used experimental protocol for calculating
mAP values. We think, it is different than the one, we used. In our case, we used all
the occurrences of each query words as queries (explained below) for calculating mAP
values (for the Japanese dataset, we used 10 occurrences of every query words). But
in [Terasawa and Tanaka, 2009], we do not have any information about their experimental
setup. ii) We used different strategy for handling multiple occurrences of a query word
in line (explained below), but we don’t have any information regarding this, for the one
mentioned in [Terasawa and Tanaka, 2009].

The ground truth data contains image name and location of each query word. A single
query word can appear several ways in the image: i) particular query image can occur in
a line of the document; ii) a query image can occur multiple times in a single line; iii) the
query can occur as a hyphenated word, where the two parts of the query will occur in two
consecutive text lines; iv) there can be a line, which can contain complete query word and
a part of hyphenated query word (refer to Table 4.3). The issue of having multiple query

14The implementation of CDP, used here is taken from: http://www.diva-portal.org/smash/get/
diva2:347724/FULLTEXT01.pdf. Page no. 86

15For our version of the implementation of CDP, please visit: http://continuousdynamicprog.
blogspot.in/
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Table 4.3: Statistics of the query words in GW dataset

G
W

D
at
as
et

Q̆◦ Ñ◦(N̂◦) C̄ F̄

1755 37 (0) 0.701 0.592
Company 20 (1) 0.737 0.662
Cumberland 13 (1) 0.818 0.845
December 26 (0) 0.755 0.761
Fort 22 (0) 0.689 0.660
Instructions 21 (1) 0.955 0.958
Letters 22 (0) 0.841 0.884
October 15 (1) 0.705 0.713
Orders 33 (0) 0.601 0.568
Recruits 12 (0) 0.837 0.741
Sergeant 12 (0) 0.731 0.799
Virginia 14 (0) 0.515 0.495
Winchester 15 (4) 0.693 0.674
Captain 27 (1) 0.660 0.646
Regiment 17 (0) 0.546 0.411

words (hyphenated or complete) in one line can only be handled by CDP. The architecture
of CDP is capable to spot multiple query words in a single line, if a good distance threshold
(difficult to estimate and highly data dependent) can be estimated, which can distinguish
between right and wrong matches.

In the case of hyphenated words, it is obvious that the word will occur in two consecutive
lines. So, in that case, two consecutive lines are merged and their corresponding feature
values are also merged. When one particular line is having more than one query word,
e.g. a line has n occurrences of query word, the line image is considered n times for
matching with the particular query image. For each consideration, the pixels of only one
occurrence is kept unchanged in the line image and the pixel intensities of other occurrences
exists in the same line is changed into zeros to avoid ambiguity in matching process. This
process is repeated for each occurrences in that particular line. For the fair comparison
with all other algorithms (including FSM) against CDP, we need to do this restructuring
of the lines, having multiple occurrences of query words. When a line has one or more
than one complete word and a hyphenated word, the consecutive two lines are merged
for matching the hyphenated word with the query word image. Then, the particular
line having multiple occurrences of complete query image among these two consecutive
lines is identified. Similar technique as previous one is followed for this particular line
by keeping the pixels of one occurrence unchanged and changing the intensities of the
pixels of other occurrences, including the portion of hyphenated word. For obtaining
the accuracy, we calculate the mean average precision (mAP)17 for all of the selected
15 query words (see Fig.4.8). Let’s denote the query word by qts where s represents all
the considered query words for the experiment 1 ≤ s ≤ 15 and t represents the number of
occurrences of each of the query words in complete GW dataset. For example, the particular
query word "Winchester" has 15 occurrences in the form of full word (not hyphenated)
and has 4 occurrences in the form of hyphenated words, so 1 ≤ t ≤ 19 (see Table 4.3).

16Please see Section 4.3 for details.
17https://en.wikipedia.org/wiki/Information_retrieval#Mean_average_precision
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Figure 4.8: a) Performance comparison of MVM with MVM-FSM16and of SSDTW with
SSDTW-FSM16 (see digitized version of the image, as the curves are completely over-
lapped). b) Performance comparison of CDP, M-CDP16, FSM, MVM, SSDTW on GW
dataset. c) Performance comparison of CDP, M-CDP, M-CDP-FSM16, FSM, MVM, SS-
DTW, OSB on Japanese dataset

We consider all the occurrences of each of the 15 query words for the experiment, e.g
the accuracy is computed on all the 19 (complete-15, hyphenated-4) occurrences of the
query word ("Winchester"). In simple words, we calculated the average precision over
(37 + 21 + 14 + 26 + 22 + 22 + 16 + 33 + 12 + 12 + 14 + 19 + 28 + 17) = 293 query images.
The accuracy of each query word is given in Table 4.3. The mean precision and recall
(P-R) are also calculated and plotted over all of the 15 query words (see Fig.4.8). The
average mAP of each algorithm over 15 query words are mentioned inside the legend of the
graph. It can be seen from the graphs and from mAP values that FSM has outperformed
all other classical sequence matching technique except CDP. There are slight difference in
mAP (0.7194− 0.6944 = 0.025) between CDP and FSM.

	   	   	  

	   	  

	   	  

	   	  

	   	  

	   	  

	   	  

(a) Query images used for GW dataset
	   	   	   	  

(b) Query images used for Japanese dataset

Figure 4.9: Query images of (a) GW dataset (b) Japanese dataset.
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Table 4.4: Statistics of the query words in Japanese dataset

Q̆◦ Ñ◦(N̂◦) C̄ F̄

Ja
pa

ne
se A.Matazaemon 154 (10) 0.841 0.820

B. Uriyamusu 68 (5) 0.821 0.763
C.InoueTomizou 22 (3) 0.722 0.717
D.IshizukaKanzou21 (4) 0.603 0.596

4.4.1.2 Results on Japanese dataset

For the case of Japanese dataset, same features and aforementioned experimental pro-
tocol is used. The experimented query images of this dataset are shown in Fig. 4.9b. We
also perform the same aforementioned restructuring of lines for handing different types of
occurrences of query words in a line. The mAP of this dataset is calculated over 4 query
images. Compared to GW dataset, there are many occurrences of each query words in
the Japanese dataset. So, to reduce the computation time to calculate mAP, we randomly
choose 10 occurrences of each query word. Among these 10 occurrences, we took 5 oc-
currences of complete words and other 5 occurrences of hyphenated words. If any query
word has less than 5 occurrences of hyphenated words (e.g. C.InoueTomizou; see Table
4.4), then we choose more complete words instead of hyphenated words. Same as GW
dataset, the computed P-R values for Japanese dataset can be visible in Fig. 4.8c. Also
for this dataset, FSM has outperformed all other classical sequence matching technique
except CDP and there exist minor difference in accuracy (0.7473− 0.7244 = 0.022).

By analyzing the results of both the dataset, we can say that, most probably, the
special DP path and associated weights with the DP paths of CDP are responsible for this
slightly better result (see the result of M-CDP, (where instead of the complex DP path,
used in classical CDP, we used a simple DP path, as the one used in classical DTW.) is
lower than original CDP). This rationale can be cross checked by seeing the performance
of M-CDP-FSM on GW dataset, where simple DP path (with no weight, e.g. classical
DTW) is used, by keeping the same CDP’s architecture. This modification helps us to
understand the effect of the special DP path of CDP. It can be seen from Fig.4.8b, that
the performance of M-CDP-FSM is lower than CDP. Whereas due to the noise or outliers
(derivatives also) skipping capability, FSM can perform well (see some visual examples,
shown in Fig 4.11d.) in the presence of noise and derivatives (with comparative high
variations). During the experiments, we have observed that the noise skipping ability of
FSM is an advantageous characteristic over CDP. But when there are no or little noise
present in the signal, FSM encounters some problem to distinguish between inlier and
outliers and in these cases CDP performs comparatively better than FSM. As GW and
Japanese datasets does not contains much noise, so the overall statistical accuracy of FSM
is slightly lower than CDP. Nevertheless, for some query words in GW dataset, FSM has
outperformed CDP (the highlighted words in Table. 4.3). This is mainly due to the outliers
skipping ability and multiple matching (many-to-one and one-to-many) capability of FSM
over CDP, and GW dataset is comparatively more noisy than Japanese dataset, which is
very less noisy. In the following Fig. 4.10, we have give some visual examples of matching
query words in segmented lines with FSM.
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(a) Four separate query words are matched with
corresponding segmented lines in GW dataset

	  

(b) Four separate query words are matched
with corresponding segmented lines in Japanese
dataset

Figure 4.10: Visual examples of matching in (a) GW dataset (b) Japanese dataset.

4.4.2 Results on Segmented Pseudo Words

The application of FSM on segmented pseudo words is performed on CESR dataset18.
The details of this dataset19 is described in Section 2.5.4 of Chapter 2. For performing
the experiments, we manually selected 123 queries, based on number of occurrences, their
possible relevant derivatives and their meaningfulness as queries. To perform the experi-
ment with these queries, we followed the architecture and framework, described in Fig. 2.2
of Chapter 2. For this dataset, the column based features (see Table 2.2 in Section 2.3.2.1
of Chapter 2) are extracted and used for matching. The queries and their corresponding
considered derivatives, are categorized into 10 groups (see Table 4.5). The target set for
each query is composed of the pages from the book, where the query has appeared. The
experiments are performed in group-wise manner. The words, enclosed by rectangle box,
represents each group. Each and every query word of a group are considered as query.
When one word from a group is considered as query the other words of that particular
group are considered as its derivatives.

The accuracy for this dataset is calculated by averaging the accuracies over all of the
images (all images are used as query) in each group. One should notice that, due to im-
proper segmentation, some of the target words can be smaller than considered query word.
In such cases, that particular small target words are considered as queries and the original
query word is considered as target word and the 2nd way of normalization (see bottom
portion of Section 4.2.1) is used for FSM, to avoid wrongly segmented small words from
appearing at top ranked positions in overall nearest neighbor ranking process. Moreover,
very small segmented words (e.g. one or two characters) are pruned by considering their
width with respect to the width of original query word. We heuristically decided, if the
width of any target word is lesser than 35% of the width of query word, we pruned the
target word.

It is evident from the result, mentioned in Table 4.5 that in many cases FSM has

18http://cesr.univ-tours.fr/
19The complete dataset is publicly available at https://github.com/tanmayGIT/CESR_DataSet
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Q̆◦ Ñ◦ Õ◦ C̄ F̆

liberte 2 219 0.308 0.230
libre 19 2511 0.712 0.679

librement 3 462 0.363 0.374
TW = 3192; ĀC = 0.461

ĀF = 0.428
cheualier 4 522 0.501 0.470
cheual 38 5099 0.509 0.443

cheualerie 1 171 0.451 0.464
cheuallier 1 168 0.421 0.426
cheuaus 4 546 0.395 0.438
cheuaux 8 1064 0.400 0.334

TW = 7570; ĀC = 0.446
ĀF = 0.429

victoire 23 3173 0.646 0.577
victo 1 125 0.593 0.511
victoi 2 325 0.542 0.368
victoire 23 3173 0.646 0.578
victorieus 5 523 0.375 0.337
victorieux 6 901 0.518 0.486

TW = 8220; ĀC = 0.553
ĀF = 0.476

mortel 11 1032 0.398 0.403
immortales 1 166 0.132 0.112
immortalit 8 968 0.332 0.290
immortel 14 930 0.200 0.181
immortelle 10 609 0.221 0.185
immortels 2 168 0.227 0.196

mort 28 2934 0.087 0.106
mortale 4 152 0.155 0.141
mortales 1 29 0.131 0.136
mortalia 5 275 0.107 0.074
mortalibus 2 285 0.078 0.044
mortalite 1 176 0.225 0.216
morte 10 1033 0.078 0.071

mortelle 9 822 0.285 0.290
mortelles 8 1172 0.264 0.228
mortels 4 324 0.227 0.225
mortem 5 243 0.036 0.026
mortes 1 169 0.054 0.101
morgue 2 217 0.026 0.024
morti 1 156 0.200 0.156
mortis 3 357 0.044 0.039
morts 3 221 0.082 0.099
mortua 1 184 0.031 0.025
mortuum 1 173 0.095 0.061
mortuus 1 184 0.030 0.024
mortz 3 539 0.076 0.092
TW = 13518; ĀC = 0.147

ĀF = 0.136

Q̆◦ Ñ◦ Õ◦ C̄ F̄

roy 119 12063 0.272 0.293
royales 1 154 0.066 0.059
royaume 2 263 0.646 0.765
royaumes 4 485 0.747 0.763
royaus 1 161 0.116 0.114
royaute 2 274 0.188 0.168
royaux 1 191 0.429 0.357
royne 8 915 0.252 0.193
roys 17 1442 0.173 0.158
rois 16 1894 0.021 0.040

roistre 1 110 0.012 0.013
roit 20 2744 0.017 0.038
TW = 20696; ĀC = 0.245

ĀF = 0.247
reconneut 1 180 0.045 0.045
reconnoi 1 173 0.047 0.086

reconnoissable 2 331 0.343 0.293
reconnoissance 6 937 0.318 0.318
reconnoissant 1 171 0.334 0.294
reconnoissent 1 174 0.307 0.103
reconnoissoient1 175 0.219 0.175
reconnoissoit 2 338 0.291 0.281
reconnoissons 3 486 0.344 0.277
reconnoistre 7 975 0.140 0.132
reconnoit 5 723 0.052 0.092
reconnoitre 4 634 0.162 0.160
reconnoy 3 360 0.088 0.083
reconnu 2 286 0.044 0.097
reconnue 1 174 0.037 0.045

TW = 6117; ĀC = 0.185
ĀF = 0.165

reconoissent 1 178 0.092 0.083
reconoissoit 1 167 0.104 0.095
reconoitre 1 175 0.055 0.049
recogneu 1 146 0.143 0.134
recognois 1 182 0.328 0.335

recognoissan 1 180 0.312 0.255
recognoissance 3 506 0.330 0.330
recognoissant 1 166 0.297 0.249
recognoisse 1 29 0.439 0.380
recognoissons 1 163 0.426 0.383
recognoistre 8 972 0.118 0.111
recognoit 1 170 0.343 0.309
recognoitre 2 318 0.150 0.139
recognu 1 172 0.148 0.135

TW = 3524; ĀC = 0.235
ĀF = 0.213

Q̆◦ Ñ◦ Õ◦ C̄ F̄

connoi 4 510 0.019 0.024
connois 5 821 0.312 0.321

connoissan 11 1053 0.475 0.395
connoissance 34 4665 0.456 0.456
connoissans 2 290 0.224 0.167
connoissant 4 536 0.482 0.390
connoisse 1 166 0.505 0.489
connoissent 4 589 0.431 0.397
connoissoit 3 378 0.459 0.475
connoist 1 116 0.276 0.287
connoistre 12 1531 0.223 0.186
connoit 5 688 0.035 0.047
connoitre 3 381 0.080 0.086
connoy 5 608 0.021 0.035
connu 3 404 0.018 0.023
connue 1 166 0.031 0.025
connues 4 350 0.029 0.025
connus 1 169 0.018 0.024
TW = 13431; ĀC = 0.228

ĀF = 0.214
cognoissons 1 181 0.505 0.482
cognoistre 12 1705 0.583 0.557
cognoit 6 915 0.147 0.113
cognoitre 2 266 0.371 0.407
cognosci 1 159 0.142 0.205
cogneu 3 518 0.098 0.100
cogneue 2 298 0.065 0.077
cogneut 1 162 0.121 0.088
cognoi 1 84 0.094 0.074
cognois 5 753 0.519 0.537

cognoisoit 1 121 0.569 0.555
cognoissan 2 320 0.516 0.539
cognoissance 29 4187 0.578 0.552
cognoissances 1 168 0.716 0.625
cognoissant 1 189 0.486 0.480
cognoissent 6 657 0.492 0.459
cognoissions 1 174 0.519 0.555
cognoissoint 1 167 0.499 0.502

TW = 11024; ĀC = 0.390
ĀF = 0.384

despouille 4 355 0.721 0.701
despouiller 5 771 0.785 0.757
despouillera 1 152 0.763 0.768
depouille 1 181 0.754 0.719
depouiller 1 188 0.392 0.403

TW = 1647; ĀC = 0.683
ĀF = 0.670

Table 4.5: Statistics and results of CESR dataset. The words, enclosed by rectangular box,
represents each group.
The target set of words (Õ◦) against each query is generated only from the pages, where the query
word has appeared. Q̆◦ = Queries. Ñ◦ = No. of occurrences of the query word. C̄ = mAP of
CDP; F̄ = mAP of FSM; TW = Total words in target set; ĀC = average mAP of CDP; ĀF =
average mAP of FSM.
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      (a) Some examples of query 
images 

(b) Some examples of segmented words 

(c) Sample document image 
  (d) Examples of matching by FSM (a) Example of matching by FSM
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(b) Comparative performance of CDP, FSM and
DTW

Figure 4.11: Comparative results of DTW, CDP and FSM. Some visual examples of CESR
dataset along with the matching provided by FSM (the top image is the query and bottom
one is target).

outperformed CDP, whereas in several other cases the accuracy by FSM and CDP are quite
similar (see the highlighted rows in Table 4.5). There are some queries, on which CDP
has outperformed FSM. Most probably, thanks to the special DP path and it’s associated
weights, which has helped CDP to perform better than FSM. CDP is more effective than
FSM, when there are less presence of noise inside the word images and there are less
variations between query and it’s considered derivatives. Although the average performance
(on 123 query words) of CDP is better than FSM but the special characteristics of FSM can
be highly helpful in various domains of time series sequence matching e.g. finance, video
retrieval, shape matching [Latecki et al., 2007b, Jeong et al., 2011,Albrecht, 2009,Latecki
et al., 2007c] etc.

4.4.2.1 Results on UCR dataset

Thanks to the generalized properties of FSM, it can be applied in typical time series
matching problems. To demonstrates the applicability of FSM on typical time series do-
main, we applied it on various time series data, obtained from UCR archive. For the details
about this dataset, please see Section 1.4 of Chapter 1. The results are given in terms of
error rates, which is defined as :

Error rate =
(total number of testing data)− (total number of correctly classified data)

total number of testing data
(4.7)
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4.5. CONCLUSION

The results of DTW, mentioned in the website of UCR archive (DTW-UCR)20 are con-
sider for comparison. Along with their version of DTW (DTW-UCR), we also tested our
implementation of DTW. Although in most of the cases these two results are identical
(DTW-UCR v/s DTW) but in some cases, there exists minor difference between both of
these values. CDP [Oka, 1998] was originally proposed for the domain of speech recogni-
tion, but it had never been applied for time series classification, more precisely on UCR
dataset. As far our knowledge is concerned, we are the first ones to investigate it on UCR
dataset. It can be visible from the Table. 4.6 that in several cases CDP has outperformed
DTW and FSM (highlighted ones). Moreover, we also applied FSM on some of these
datasets for analyzing it’s performance. It can be visible that FSM has not performed well
but please note that this is a preliminary stage of investigation of FSM in the domain of
time series classification. Calculation of jump costs, plays a vital role in the performance
of FSM. Currently jump cost is calculated each time while two sequences are compared.
For classification task, this is not the right way of calculation of jump costs. Jump cost
should be calculated from the training set of each data (available in UCR archive), then
this single value of jump cost should be applied on entire test set. But, more investigations
and future work are required in this direction.

4.5 Conclusion

In this chapter, we presented a new robust sequence-matching algorithm called as FSM
algorithm, which can be easily modified into the architecture of other sequence matching
techniques e.g. DTW, SSDTW, MVM, and CDP etc. The ability to skip outlier elements
present at any position of the target sequence, and the facility for many-to-one and one-
to-many matching, makes the proposed FSM algorithm robust, generalized and applicable
for various domains of time series sequence matching e.g. finance, video retrieval, shape
matching [Latecki et al., 2007b], [Jeong et al., 2011], [Albrecht, 2009], [Latecki et al.,
2007c] etc. In this research work, we have successfully demonstrated the usefulness of the
proposed FSM algorithm in the domain of word spotting at line level as well as incorrectly
segmented word level. We plan to perform more experiments to evaluate the robustness
of FSM algorithm in comparison with other approaches on more bigger and multilingual
datasets also in general time series database. An extension of FSM, which is able to skip
noisy elements in query is presented in the next chapter. In future, we would also like to
work on the reduction of time complexity of FSM algorithm.

20http://www.cs.ucr.edu/~eamonn/time_series_data/
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Table 4.6: Summary of classification performance (error rate) on the datasets, obtained
from UCR archive

Dataset DTW-UCR DTW CDP FSM
50words 0.31 0.30989 0.197802
Adiac 0.396 0.396419 0.475703
Beef 0.5 0.5 0.466667 0.5
CBF 0.003 0.00333333 0 0.10778
Coffee 0.179 0.178571 0.214286 0.25
ECG200 0.23 0.23 0.16 0.11
FaceAll 0.192 0.24497 0.202367
FaceFour 0.17 0.170455 0.113636 0.159091

fish 0.0167 0.165714 0.102857
Gun_Point 0.093 0.0933333 0.0333333 0.046667
Linghting2 0.131 0.131148 0.131148 0.180328
Linghting7 0.274 0.287671 0.260274 0.287671
OliveOil 0.133 0.133333 0.166667 0.166667
OSULeaf 0.409 0.409091 0.305785

SwedishLeaf 0.21 0.208 0.176
synthetic_control 0.007 0.0333333 0.013333 0.12

Trace 0 0.01 0.01 0.24
Two_Patterns 0 0.00175 0.00075

wafer 0.02 0.0201168 0.0162232
yoga 0.164 0.164333 0.147667

ChlorineConcentration 0.352 0.351562 0.377604
CinC_ECG_torso 0.349 0.349275 0.254348

Cricket_X 0.223 0.223077 0.2
Cricket_Y 0.208 0.207692 0.146154
Cricket_Z 0.208 0.207692 0.182051

DiatomSizeReduction 0.033 0.0326797 0.0457516
ECGFiveDay 0.232 0.232288 0.198606 0.215777
FacesUCR 0.0951 0.0951219 0.0453659
Haptics 0.623 0.623377 0.587662

InlineSkate 0.616 0.616364 0.598182
ItalyPowerDemand 0.05 0.0495627 0.0660836 0.0379001

MALLAT 0.066 0.0660981 0.0511727
MedicalImages 0.263 0.263158 0.234211
MoteStrain 0.165 0.165335 0.113419

SonyAIBORobotSurface 0.275 0.274542 0.222962
SonyAIBORobotSurfaceII 0.169 0.16894 0.147954

StarLightCurves 0.093
Symbols 0.05 0.0502513 0.0251256

TwoLeadECG 0.096 0.095698 0.0834065





4.5. CONCLUSION
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Abstract

In this chapter, a new sequence matching algorithm called as Exemplary Sequence Cardi-
nality (ESC) is proposed. ESC is an extension of FSM. It has all the qualities as FSM, in
addition, ESC has the ability to skip the elements from query e.g. LCSS, OSB. In case of
word spotting application, the outliers skipping capability of ESC makes it less sensible to
local variations in the spelling of words, and also to noise present in the query and/or in
the target word images. By experimenting on printed historical document images, we have
demonstrated the interest of proposed ESC algorithm in specific cases when incorrect word
segmentation and word level local variations occur regularly. Thanks to it’s outliers skip-
ping facility from query sequence, this technique gives more flexibility to user for choosing
query images. This facility helps users to evade from rigorous searching for perfect query.
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5.1. INTRODUCTION

5.1 Introduction

The general introduction and literature review on sequence matching techniques are
mentioned in previous chapter on Flexible Sequence Matching. Continuing from this intro-
duction, in this section, we would like to directly introduce the proposed algorithm; Exem-
plary Sequence Cardinality [Mondal et al., 2015a]. ESC is the extended version of our previ-

Table 5.1: Comparison of characteristics of different sequence matching techniques

Method
Name

Continuity (Skipping) Boundary Condi-
tion

Nature of
Correspon-
dence

FSM Each query elements has to be
matched with some target ele-
ments but not vice versa. Skip-
ping is possible at any position of
target signal (skipping penalty
is added).

Same as MVM. One-One,
Many-One,
One-Many

ESC
[Pro-
posed]

Best optimal correspondences are
obtained between query and tar-
get sequences. Skipping is possi-
ble at any position of query and
target signal (skipping penalty
is added).

Same as OSB and
LCSS.

One-One,
Many-One,
One-Many

ously proposed sequence matching algorithm; Flexible Sequence Matching (FSM) [Mondal
et al., ]. We would like to remind you that FSM has the following qualities : i) can perform
one-to-many, many-to-one, one-to-one matching. ii) can skip outliers, belonging at any po-
sition in the target i.e. at the beginning, at the end or in between the inlier. Hence, FSM
is able to find a partial sequence corresponding to a query inside a longer target sequence.
But notably, FSM is not able to skip outliers from the query along with all the properties
mentioned above. For some application, it is evident that there can be high possibility or
could be an easier option to use an inexact query image. This is essentially true in the
query-by-example category of word spotting system, for which rigorously searching for a
perfect query image could be difficult. Hence in ESC, we tried to overcome this particular
drawback of FSM and proposed an improved version of this algorithm. In ESC, to have
the property of skipping noise from query along with all other properties of FSM, the al-
gorithmic architecture of FSM is highly modified (details are given in section 5.2). The
property wise difference between ESC & FSM is similar to the difference between OSB &
MVM.

The proposed system, is more robust to i) degradation noise ii) word derivatives iii)
improper segmentation issues. Regarding derivatives, there can exists several variants
or variations of some words. For example, in French, the word cheval (horse) can have
derivatives like "chevaux","chevalerie", "chevalier". In old French, other derivates also
exist due to lexical variations: "chevallier", "chevaus" ; and also the ”v” is often printed as
a ”u”. There exist some approaches for word spotting, which can spot words by skipping
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5.2. EXEMPLARY SEQUENCE CARDINALITY

the prefix and suffix of segmented words [Terasawa and Tanaka, 2009,Mondal et al., ].
But the proposed sequence matching based word spotting approach is also more robust to
spelling variations.

5.2 Exemplary Sequence Cardinality

We describe here the complete mathematical architecture of ESC algorithm, which has
an initial resemblance with the FSM architecture. ESC creates a relation R from two
finite sequences x (query) and y (target) of different lengths p and q: x = (x1, x2, ....., xp);
y = (y1, y2, ....., yq). The goal of the algorithm is to find x′(x′ ⊂ x) such that y′(y′ ⊂ y)
best matches with each others. The correspondence can be thought as a relation on the
set of indices 1, ....p × 1, ....q, where, one-to-one, one-to-many and many-to-one mapping
are also included. After knowing the correspondence, it is easy to compute the distance
between the two sequences by maintaining order preserving relation R between x and y.

5.2.1 Theoretical Description

First the difference matrix1 D between elements of the two sequences is calculated by
using Euclidean distance: Di,j=

√
(yj − xi)2; 1 ≤ i ≤ p; 1 ≤ j ≤ q;. By following the

same process as FSM, the difference matrix D between elements of the two sequences is
calculated and also the cost function H is defined in the same manner as FSM for con-
structing the DAG. Please note that WE follow the same process as FSM, to construct
DAG. Moreover, the same approach is used to calculate skipCost. To skip elements of
query, we do not had any links inside the DAG (it would be too complex to add between
parent nodes at the given row to all the bottom rows). Instead, we directly modify the
dissimilarity matrix for allowing the skips of query elements. We replace the cost of match-
ing two elements (distance) by skipCost and we keep track of this jump to compute the
warping path. To achieve that, we will have to modify the distance matrix. But first, to
make the very first element of the query skip-able, one null element (0) is added at the
beginning of both the query and target sequence (contrary to FSM), hence the size of the
dissimilarity matrix changed into D̂i,j ; 1 ≤ i ≤ p + 1; 1 ≤ j ≤ q + 1. Then the modified
dissimilarity matrix (Q) is created, by choosing the optimal option between matching with
the amount of dissimilarity (D̂i,j) and skipping with the burden of skip cost (skipCost) (see
Eq 5.1). Another matrix (Mi,j) is used to keep track on the indexes, where the condition:
skipCost < D̂i,j is satisfied. Now, for calculating the path cost matrix Pi,j , theQi,j matrix
is used instead of Di,j matrix. It is noteworthy to point out that mainly due to this use-
ful modification over FSM architecture, ESC is able to skip noisy elements from query also.

1Please note that the indexes of all the matrix notations used in this chapter, are always starts from 1
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5.2. EXEMPLARY SEQUENCE CARDINALITY

Algorithm 8: Exemplary Sequence Cardinality
Input: p, q,Q,S (skipCost),C(smallSkipCost)
Output: Pp,q,Rp,q,Cp,q

1 elasticity ← |q − p| (if not provided)
2 for j ← 1 to q do
3 P(1, j)← Q(1, j);
4 . Recording skip-able query elements (Eq. 5.1)
5 for i← 2 to p+ 1 do
6 for j ← 1 to q + 1 do
7 if Q(i, j) > S & i > 1 then
8 Q(i, j)← S ; M (i, j)← −1
9 else

10 M (i, j)← 1

11 for i← 2 to p+ 1 do
12 . Deciding the parent nodes
13 L← max(1, [(i− 1)− elasticity])
14 R← min(q, [(i− 1) + elasticity])
15 for k ← L to R do
16 . Find right most child
17 D ← (k + 1 + elasticity)−max(0, |k − (i− 1)|)
18 . No many to one matching with 1st dummy element
19 if i = 2 & k = 1 then
20 C ← 2
21 else
22 C ← max(k, 2)

23 . For each child node of parent node at column k
24 for j ← C to D do
25 if (j = k) then
26 J ← C
27 else if (j = k + 1) then
28 J ← 0

29 else
30 J ← S × |j − (k + 1)|
31 if P(i, j) > P(i− 1, k) + J + Q(i, j) then
32 P(i, j)←P(i− 1, k) + J + Q(i, j)
33 if M (i− 1, k) = 1 then
34 . No skipping of parent node
35 R(i, j)← i− 1; C (i, j)← k
36 else if M (i− 1, k) = −1 then
37 . Skipping parent (i− 1, k)
38 R(i, j)← R(i− 1, k); C (i, j)← C (i− 1, k);

39 . For horizontal connection
40 if P(i, j) > P(i, j − 1) + C + Q(i, j) then
41 P(i, j)←P(i, j − 1) + C + Q(i, j)
42 R(i, j)← i; C (i, j)← j − 1
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Qi,j =





D̂1,j 1 ≤ j ≤ q + 1

skipCost if skipCost < D̂i,j

D̂i,j Otherwise
(5.1)

The shortest path between each pair of reachable nodes in G can be found from path cost
matrix Pi,j . Considering Pi,j as a sub problem, the optimal structure of the problem can
be formally defined as:

P1,j = Q1,j if 1 ≤ j ≤ q + 1 (5.2)

Pi,j =min




{Pi−1,k + Qi,j+
(skipCost× (j − (k + 1)))}

{Pi,j−1 + C + Qi,j}
{Pi−1,j + C + Qi,j}


 if L

L : 2 ≤ i ≤ q + 1; (i − 1) − elasticity ≤ k ≤ (i − 1) + elasticity; k + 1 ≤ j ≤ (k + 1) +
elasticity − |k − (i− 1)|

This equation says that the 1st row of distance matrix (Q) is copied to the path cost
matrix (P). Each cells that belongs to the ith row is calculated by first choosing the
possible parent nodes at previous row (i− 1) and at the column k ranging from ((i− 1)−
elasticity) to ((i−1)+elasticity). Then the connection with it’s child nodes are performed
in the same manner as FSM.

The distance between the two compared sequences can be obtained by getting the
distance value, stored at the cell of path cost matrix, which represents the last match
between the query and target elements (contrary to FSM). The back tracking process
would start from the cell at the last row and at the jth column of path cost matrix P,
where p+ 1 ≤ j ≤ q+ 1. To normalize the sequence dissimilarity value, we divide it by the
number of corresponding pairs between the target and query sequence. Instead of having
more facilities, Please note that, ESC has same complexity as FSM i.e. Θ((2.|q − p|2).p).
It is understandable from algorithm description that the main changes in ESC comes from
the process of calculating values in path cost matrix (line 31 to 42), where we use some
intelligent technique to skip outliers from query otherwise the complexity of iteration for
path cost matrix calculation is same as FSM.

5.2.2 Description of the Proposed Pseudo Code

The cost matrix (P) calculation process is given by Algorithm 8. All the cells of the
matrix P are initialized with infinity. The cells of the path cost matrix (P) are calculated
(refer to lines 10−46) by iterating i over each row where k iterates over parent nodes and j
keeps track of child nodes. As an output, the algorithm provides the path costs in P along
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5.3. EXPERIMENTAL RESULTS ON OLD MANUSCRIPTS

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  
	  
	  

	   	  
cheualerie (1), cheual (38), cheualier (4), 
cheuallier (1), cheuaus (4), cheuaux (8) 
cognoistre (12), cognoitre (2), con- 
noistre (12), connoitre (3), re- conoitre 
(1), recognoistre (8), re- connoistre (7), 
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Figure 5.1: Matching ability of ESC on toy examples.

	   	   	  
Figure 5.2: Matching ability of ESC on some artificial images.

with two other matrices (R and C ) which are used to backtrack the shortest path, giving
the closest correspondence between the query and target elements. The matrix R keeps
track of rows and C keeps track of columns. For calculating each cell of a row, first the
range of parent nodes are calculated (line 12-14). Next, for each parent node, the possible
connections with it’s child nodes are calculated from j which is iterated between C and D.
In line 17, the system enforces to make diagonal connection with top left most parent node
(the null elements added) with it’s child node to avoid any many to one connection with
this dummy node. Note that, full skip cost J is calculated by computing the number of
skips (j − (k + 1)) in line 29. Using some toy examples, the behaviors of ESC and it’s
outliers skipping capability is demonstrated below in Fig. 5.1 and 5.2.

5.3 Experimental results on old manuscripts

To validate the interest of using ESC in word spotting application, experiments are
performed on the CESR dataset. The used the same word spotting architecture, mentioned
in Section 2.3 of Chapter 2. The segmented pseudo words or lines are described by a
sequence of classical column based features mentioned in Section 2.3.2.1 of Chapter 2.

5.3.1 Results on CESR-Dataset-1

For performing the experiments with ESC and to check it’s robustness, we compara-
tively choose small set from CESR dataset. We have manually selected 12 queries (based
on number of occurrences, their possible relevant derivatives their meaning as queries).
The test set, for each query, is composed of the pages of the book where the query or

136



5.3. EXPERIMENTAL RESULTS ON OLD MANUSCRIPTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
r
e
c
i
s
i
o
n

 

 

ESC (0.8362)
MVM (0.6520)
CDP (0.8355)
FSM (0.8028)
OSB (0.7042)
SSDTW (0.8148)

(a) P-R plot of different sequence matching al-
gorithms (mAP)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

P
re

ci
si

on
 

 
CDP (0.2946)
FSM (0.2788)
DTW (0.2651)
ESC(0.2762)

(b) Comparative performance of CDP, DTW,
FSM and ESC

Figure 5.3: Comparative results of different sequence matching approaches on two separate
datasets created from CESR data

its derivatives appear. The queries and their corresponding considered derivatives, are
categorized below into 4 groups:

1. cheualerie (1), cheual (38), cheualier (4), cheuallier (1), cheuaus (4), cheuaux
(8) : 1242

2. cognoistre (12), cognoitre (2), connoistre (12), connoitre (3), reconoitre (1),
recognoistre (8), reconnoistre (7), reconnoitre (4): 128

3. royaume (2), royales (1), royau (2), roy (119), royaumes (4), royaus (1), royaute (2),
royaux (1), royne (8), roys (17), rois (16): 282

4. immortel (14), immortales (1), immortali (10), immortalit (8), mortel (11), im-
mortelle (10), immortels (2): 125

The aforementioned bold words are independently used as queries, whereas the other cor-
responding remaining words (bold and non bold) in the group are taken as the derivatives
of considered query word. Please note that the aforementioned word derivatives for each
query words are considered as true positives for calculating Precision-Recall (PR) of the
system. The comparative precision-recall (PR) curve of CDP, FSM, SSDTW, MVM, OSB
and ESC in Fig. 5.3a shows that ESC has minutely outperformed FSM and CDP algo-
rithm. Especially, ESC has comparative high precision when recall is less than 0.5. The
mean average precision is also mentioned in the graph, along with the curve of each algo-
rithms. Nevertheless, even if ESC is efficiently working, we can notice that, on average, the
improvement in matching is not able to highly influence the ranking order and precision
and recall. One possible explanation comes from the features used, that are very local and

2Considered size of the dataset (for this particular group).
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sensitive. In such situation, the ability of ESC to skip and jump elements could be counter
productive if jumpCost are not correctly chosen (the algorithm becomes more sensitive).

Q̆◦ Ñ◦ Õ◦ C̄ F̄ Ē

liberte 2 219 0.308 0.230 0.160
libre 19 2511 0.712 0.679 0.658

librement 3 462 0.363 0.374 0.165
TW = 3192; ĀC = 0.461; ĀF = 0.428

ĀD = 0.488; ĀE = 0.382
mortel 11 1032 0.398 0.403 0.386

immortales 1 166 0.132 0.112 0.134
immortalit 8 968 0.332 0.290 0.343
immortel 14 930 0.200 0.181 0.209
immortelle 10 609 0.221 0.185 0.217
immortels 2 168 0.227 0.196 0.228

mort 28 2934 0.087 0.106 0.076
mortale 4 152 0.155 0.141 0.139
mortales 1 29 0.131 0.136 0.125
mortalia 5 275 0.107 0.074 0.103
mortalibus 2 285 0.078 0.044 0.073
mortalite 1 176 0.225 0.216 0.222
morte 10 1033 0.078 0.071 0.081

mortelle 9 822 0.285 0.290 0.286
mortelles 8 1172 0.264 0.228 0.269
mortels 4 324 0.227 0.225 0.270
mortem 5 243 0.036 0.026 0.030
mortes 1 169 0.054 0.101 0.046
morgue 2 217 0.026 0.024 0.027
morti 1 156 0.200 0.156 0.192
mortis 3 357 0.044 0.039 0.045
morts 3 221 0.082 0.099 0.066
mortua 1 184 0.031 0.025 0.032
mortuum 1 173 0.095 0.061 0.076
mortuus 1 184 0.030 0.024 0.030
mortz 3 539 0.076 0.092 0.071

TW = 13518; ĀC = 0.147; ĀF = 0.136
ĀD = 0.126; ĀE = 0.145

reconneut 1 180 0.045 0.045 0.046
reconnoi 1 173 0.047 0.086 0.048
TW = 353; ĀC = 0.031 ĀF = 0.043

ĀD = 0.101 ĀF = 0.031

Q̆◦ Ñ◦ Õ◦ C̄ F̄ Ē

roy 119 12063 0.272 0.293 0.270
royales 1 154 0.066 0.059 0.066
royaume 2 263 0.646 0.765 0.640
royaumes 4 485 0.747 0.763 0.714
royaus 1 161 0.116 0.114 0.106
royaute 2 274 0.188 0.168 0.221
royaux 1 191 0.429 0.357 0.381
royne 8 915 0.252 0.193 0.231
roys 17 1442 0.173 0.158 0.171
rois 16 1894 0.021 0.040 0.022

roistre 1 110 0.012 0.013 0.013
roit 20 2744 0.017 0.015 0.015

TW = 20696; ĀC = 0.245;ĀF = 0.247
ĀD = 0.230; ĀE = 0.237

despouille 4 355 0.721 0.701 0.669
despouiller 5 771 0.785 0.757 0.761
despouillera 1 152 0.763 0.768 0.807
depouille 1 181 0.754 0.719 0.736
depouiller 1 188 0.392 0.403 0.369
TW = 1647; ĀC = 0.683;ĀF = 0.670

ĀD = 0.602; ĀE = 0.669

cheualier 4 522 0.501 0.470 0.534
cheual 38 5099 0.509 0.443 0.414

cheualerie 1 171 0.451 0.464 0.445
cheuallier 1 168 0.421 0.426 0.403
cheuaus 4 546 0.395 0.438 0.419
cheuaux 8 1064 0.400 0.334 0.366
TW = 7570; ĀC = 0.446; ĀF = 0.429

ĀD = 0.347; ĀE = 0.430
victoire 23 3173 0.646 0.577 0.602
victo 1 125 0.593 0.511 0.397
victoi 2 325 0.542 0.368 0.383
victoire 23 3173 0.646 0.578 0.602
victorieus 5 523 0.375 0.337 0.274
victorieux 6 901 0.518 0.486 0.495
TW = 8220; ĀC = 0.553; ĀF = 0.476

ĀD = 0.497; ĀF = 0.459

Table 5.2: Statistics and results of CESR dataset. The words, enclosed by rectangular box,
represents each group.
All the notations are same as the ones mentioned in Table 4.5 of Chapter 4. Ē = mAP of ESC;
ĀD = average mAP of DTW; ĀE = average mAP of ESC.
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5.3.2 Results on CESR-Dataset-2

To verify the performance of ESC on comparatively larger dataset, we consider 60
queries from the set of 123 queries, mentioned in Section 4.4.2 of Chapter 4. The results on
this set of queries are mentioned in the same manner (refer to Table 5.2) as the one is given
in Table 4.5 of Chapter 4. It can be seen from the Table 5.2, that ESC has outperformed
CDP and FSM in several cases (the highlighted entries in Table 5.2). The comparative
P-R plot of ESC in comparison with CDP, DTW and FSM can be seen in Fig. 5.3. It can
be seen from this plot that although ESC have not shown good performance at top ranked
positions but at later ranked positions, it has performed well. The overall mAP (0.276) of
ESC is also comparable with others; i.e. FSM (0.278) and DTW (0.265). Although, here
also the overall statistical mAP of CDP has outperformed (0.294) others but it is shown in
Table 5.2 that for some specific queries, ESC has outperformed all other techniques. This
improvement is mainly due to it’s noise skipping capability from query as well as target
sequence.

5.4 Conclusion and Future Work

In this chapter, we presented a new robust sequence matching algorithm called as
ESC algorithm. The ability to skip outlier elements present at any position of the target
and query sequence, and the facility of multiple matching, makes the proposed ESC
algorithm robust, generalized and applicable for various disciplines of sequence matching.
In future, we plan to use hyphenated words as query and also try to retrieve composed
hyphenated words. It is noteworthy to mention that if an empirical threshold can be
fixed, which can distinguish between relevant and non relevant matches, ESC could also
be used (e.g. CDP) for retrieving multiple occurrence of query sequence from long target
sequence. But it needs more inspection, experiments and may be some minor modification
of ESC’s architecture. Moreover, like FSM, ESC can also be applied on conventional time
series matching problems (UCR dataset). We plan to widely study the impact of the
mentioned technique of calculating jump cost on various dataset. We also plan to perform
more experiments to evaluate the robustness of ESC algorithm in comparison with other
approaches on bigger and multilingual datasets.
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Improved Shape Code Based Word
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Abstract

In the previous chapters, we have seen several sequence matching techniques along with
two new sequence matching technique i.e. FSM and ESC. All of these aforementioned tech-
niques were build to match sequences of real numbers, where the numerical dissimilarity
between numbers are considered for matching these sequences. For the case of matching
two sets of symbols, Longest Common Subsequence (LCSS) and Levenshtein Distance are
conventional techniques, which have been popularly used in literature. In this chapter, we
propose a shape code (symbol) based word-image matching technique by using LCSS and
Levenshtein Distance for word retrieval in documents, written in Indian languages. Each
query word image to be searched is represented by a sequence of shape codes that corre-
sponds to primitives. Then an inexact string matching technique is applied for measuring
the similarity between the codes generated from the query word image and each candidate
word images, obtained from the document. Based on the similarity score, we retrieve the
document where the query image is found. Experimental results on Bangla, Devanagari
scripts document image databases confirm the feasibility and efficiency of our proposed
approach. 142



6.1. INTRODUCTION

6.1 Introduction

There have been many attempt by the research community to propose several robust
word spotting systems. The detailed literature review of numerous set of word spotting
techniques are mentioned in Chapter 2. In this chapter, we only focused on the word
spotting or word image retrieval techniques, which are achieved by shape coding based
approaches. Word image retrieval can be considered as sub domain, descended from the
domain of content based image retrieval (CBIR). In past few years, there have been many
advanced technique proposed in this domain. There are numerous amount of applications
of CBIR framework e.g. medicine, entertainment, education, manufacturing, etc. [Prasad
et al., 2001], which make use of vast amount of visual data in the form of images. One of
the main challenge in this domain is to retrieve images with rapidity along with satisfiable
accuracy [Lew et al., 2006b]. The use of low level visual features such as color, shape,
texture, spatial layout, object motion, etc., is a possible way to achieve this objective.
One way to represent these features is by using shape codes, which can give sufficient
distinguishable information in low dimensional space [Prasad et al., 2001].

Shape code is a technique to represent the image features by numeric values. As
mentioned in earlier paragraph that shape coding based image matching techniques was
initially introduced in the domain of image retrieval and have been well explored for word
image retrieval, mainly for Latin scripts [Lu and Tan, 2008,Lew et al., 2006a,Lu and Tan,
2004]. Word Shape Coding based image matching technique is used for calculating the
dissimilarity between query and target images. Word Shape Coding maps a word image
into a set of numbers rather than real character identities. These symbol set can be thought
as a sequence of real and positive numbers, extracted from query and target images. These
sequence of real numbers can be matched by using several relevant sequence matching
algorithms, for finding the dissimilarity values between query and target images.

Although there are sufficient amount of research work done for fast word image match-
ing for Latin scripts [Lu and Tan, 2008], [Lew et al., 2006a], [Lu and Tan, 2004], but surpris-
ingly there are few research works has been done in this direction with Indian scripts. More
over, almost the same impediment do exist for Indian scripts that the OCR for Indic scripts
are not mature and accurate enough for general purpose use. The goal of our research work
is to propose a fast and robust word spotting technique for locating the desired words in
the complete document, which is also useful for indexing purpose. In this chapter, a ro-
bust, script independent and computationally inexpensive word image matching process
is proposed. This work is an extension of our previously published work [Tarafdar et al.,
2010]. The chapter is organized as follows: the literature survey on shape code based word
image matching techniques are explained in Section 6.2. The description and properties of
Bangla and Devanagari scripts are given in Section 6.3. The outline of proposed approach,
description of features and adapted sequence matching techniques are given in Section 6.4.
The experimental results are presented in Section 6.5 and finally the conclusion of this
chapter is mentioned in Section 6.6.
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6.2 Literature Survey

There have been many earlier published works, which are often based on the character
shape coding that annotates character images by a set of pre-defined codes, for the retrieval
of document images. In [Shijian Lu, Chew Lim Tan, 2006], the character extreme points
are used to code segmented word images and the resultant word shape codes are then
compared by using Bray Curtis distance [Shijian Lu, Chew Lim Tan, 2006] for the language
identification. Later, along with the features given in [Shijian Lu, Chew Lim Tan, 2006], the
number of horizontal word cuts is incorporated in [Lu and Tan, 2008] for the multilingual
document image retrieval. In this case the authors used cosine distance as the dissimilarity
measure. Besides this approach, another similar approach is also reported for keyword
spotting in [Lu and Tan, 2004], which explains the capability of partial word matching. In
this approach, each word image is firstly annotated by a primitive string. Then, an inexact
string matching technique is utilized to measure the similarity between the two primitive
strings generated from two word images. On the basis of previous works mentioned in [Lu
and Tan, 2008], [Lew et al., 2006a], [Lu and Tan, 2004] an alternative technique and
combination of feature descriptors for keyword spotting is mentioned in [Bai et al., 2009].
The different sequence alignment similarity measures, mentioned in this paper is used
for partial or whole word matching. The mentioned technique is tolerant to serifs, font
styles and certain degrees of touching, broken or overlapping characters. Compared to the
previous works by the same authors mentioned in [Lu and Tan, 2008,Lu and Tan, 2004],
this approach shows some improvements not only in terms of better precision and higher
retrieval rate, but more importantly, the ability for partial matching also.

A technique to locate content representing words for a given document image using ab-
stract representation of character shapes is described in [Nakayama, 1994]. The ambiguity
of mapping of character shape code is limited by distinguishing punctuation marks from
general characters and stop words from other words, based on the permutation of character
shape codes. Numerals and acronyms in capital letters are also distinguished from general
words by the arrangement of the shape codes. With these distinguishable characteristics,
the content representing words in a document are marked. Another word image matching
technique, based on shape codes for hand-written English document images is mentioned
in [Sarkar, 2013]. This technique implements two level of selection for word segments to
match search query. First based on word size and then based on character shape code of
query.

All of the above mentioned techniques are based on character shape codes, so obviously
they need properly segmented characters. But this a critical bottleneck of these systems.
Even on minutely bad quality images, it could be difficult to properly segment characters.
In such cases, these above defined systems would fail to perform. To overcome the problems
of character shape coding scheme, several word shape coding schemes has been proposed
in the literature, which treats each word image as a single component and so are much
tolerant to character segmentation error. In [Shijian and Lim Tan, 2008], vertical bar
pattern based features are extracted from segmented word images through local extrema
point detection. These extracted vertical bar pattern are used to build document vectors,
which is used to characterize the shape and frequency of the contained character and word
images. It in terms of help to obtain the pair-wise similarity of document images by means
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of scalar product of document vectors. Based on the density and distribution of vertical
runs, underlying script of the document is identified. Latin based languages are then
differentiated by using a set of word shape code, which are constructed using horizontal
word runs and character extreme points. Another word shape token based technique for
document image classification is explained in [Nakayama, 1996]. Using a vector space
classifier with scanned document image database, this technique has shown that word
shape token based approach is comparatively accurate for content oriented categorization
compared to conventional OCR based approach.

A text retrieval system is proposed in [Tan et al., 2002]. In this approach, documents
are segmented into character objects and image features are extracted, namely the vertical
traverse density (VTD) and horizontal traverse density (HTD). An n-gram-based document
vector is constructed for each document based on these features. Text similarity between
documents is then measured by calculating the dot product of the document vectors. A
technique is mentioned in [Smeaton and Spitz, 1997] for performing information retrieval
on document images by the generalizations of character images, which are implicitly used
for classification. The shape codes, extracted from character images agglomerates into
word tokens, which is used as a representation of the underlying words for word retrieval
purpose. A system is explained in [Chen et al., 1995] for searching user-specified phrases in
imaged text. The phrases can be word fragments, words, or groups of words. The imaged
text can be consisting of a number of different fonts and can also contain graphics. A
combination of morphology, simple statistical and hidden Markov model are used to detect
and locate the phrases on the deskewed images based on multi-resolution morphology.
Baselines, top lines and the x-height in a text-line are identified using simple statistical
methods. Hidden Markov models are created for each user-specified search string and to
represent all text and graphics other than the search strings. Phrases are identified using
Viterbi decoding on a spotting paradigm created from these models. A method is described
in [Spitz, 1997] is to classify the scripts of a document into two broad classes: Han-based
and Latin-based. The approach of classification is based on the spatial relationships of
features related to the upward concavities in the existing character structures. Language
identification within the Han script class (Chinese, Japanese, Korean) is performed by
analysis of the distribution of optical density in the text images. Whereas 23 Latin-based
languages detection technique based on character shape codes, a representation of Latin
text that is inexpensive to compute is also explained in this paper.

6.3 Properties of Bangla and Devanagari Scripts

There are twelve scripts in India and in most of these scripts, the number of alphabets
(basic and compound characters) is more than two hundred fifty. Bangla and Devanagari
[Chaudhuri and Pal, 1997,Chaudhuri and Pal, 1998] are oriental scripts descended from the
Brahmi script and these scripts are the two most popular scripts in India. In both scripts,
the writing style is from left to right and there are no concept of upper/lower case. Both
the scripts have about fifty basic characters. The basic characters of Bangla script is shown
in Fig.6.1. The most popular Indian language Hindi, which is written in Devanagari script.

1Source: http://rishida.net/blog/?cat=3; http://www.omniglot.com/writing/bengali.htm
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(a) (b)

Figure 6.1: (a) Basic characters and (b) compound characters of Bangla script1

Nepali, Sanskrit and Marathi are also written in Devanagari script. Moreover, Hindi is
the national language of India and the third most popular language in the world [Lin-Lin,
2009]. Devanagari script has 52 symbols (10 vowels, 2 modifiers and 40 consonants) (see
Fig. 6.2a and Fig. 6.2b). Alphabets are known as "matra" symbols. Matra symbols are
used when consonants and vowels are to be written together. Bangla, the second most
popular language in India and the fifth most popular language in the world, is an ancient
Indo-Aryans language. Bangla script alphabet is used in texts of Bangla, Assamese and
Manipuri languages. Bangla is also the national language of Bangladesh and the official
language of West Bengal State of India. Bangla is spoken by around 211 million people
in Bangladesh and Indian state of West Bengal. Alphabet set of this script has 11 vowels,
40 consonants, and 10 numerals called basic characters (see Fig. 6.1a). There are also
more than 200 compound characters which is formed by combination of two or more basic
characters. Some examples of compound characters are shown in Fig.6.1b. Vowels in
these scripts generally take a modified shape in most words and are called modifiers or
allographs (see Fig. 6.1b and Fig.6.2b). Modifiers generally do not disturb the shape of
basic characters in the middle zone of a line. If the shape is disturbed in the middle zone,
we call resultant shape as a compound character. A segmented word of such scripts can be
partitioned into three zones. The upper zone denotes the portion above the headline, the
middle zone denotes the portion between headline and baseline and the lower zone is the
portion below baseline. The imaginary line separating middle and lower zone is known as
base line. Different zones of a Devanagari line are shown in Fig.6.3a. Horizontal histogram
technique is used, to find the headline and baseline [Chaudhuri and Pal, 1998] of a word

2Source: http://www.omniglot.com/writing/hindi.htm;
http://www.airliners.net/aviation-forums/non_aviation/print.main?id=2263974
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(a) (b)

Figure 6.2: (a) Basic consonants of Devanagari script (left) (b) Additional consonants,
compound consonants and vowels of Devanagari scripts (right)2
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Figure 6.3: (a) Different zone of the word (b) Some Bangla (top)3, (c) Devanagari (bottom)
characters3

6.4 Outline of the proposed approach

For this work, we are considering improperly segmented words, which are directly
available from the experimental dataset3 (details of dataset is given in Section 6.5). By
considering the available monochrome segmented words for our experiments, the features
are extracted from each word image and are stored off-line. The purpose of word spot-
ting is then achieved by calculating the dissimilarity measures between query and target
word images (i.e. all the word images belongs to the dataset except query words). After
calculating the dissimilarity values between target word images, these images are ranked
according to their dissimilarity values. The details of the different steps are given below.

3We did not have access of complete document images, we only had access to the segmented words.
By visually inspecting the dataset, it can be understandable that the applied word segmentation algorithm
could not perfectly segment all the words and there are some occurrences of over and under segmentations.
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6.4.1 Feature Extraction

In the following section, we briefly elucidate five word shape coding schemes. Interested
readers are requested to see [Tarafdar et al., 2010], for detailed discussions on these features.
For general discussion on shape codes, used for word image matching (mainly on Latin
scripts), interested readers are requested to see [Lu et al., 2008,Tan et al., 2003]. In this
research work, we use all the features, mentioned in [Tarafdar et al., 2010]. Moreover, we
propose three new features based on the fore ground pixels (F6, F7, F8; for details, please
see Section 6.4.1.6). The effectiveness of these added features are shown in experimental
section (refer to Section 6.5). In the following sections, we present a brief descriptions of
the features, taken from [Tarafdar et al., 2010] and at last but not least, we present the
description of the proposed features (F̄6, F̄7, F̄8).

Let’s denote the considered binarized word image byWb having total R number of rows
and C number of columns. Since in Devanagari, Bangla and Gurumukhi text, characters
in a word are connected through headlines, we detect and delete the headline portion of
the word, to make the characters of a word "more disconnected" as shown in Fig.6.4i.
To remove the headline, a horizontal histogram of foreground pixels are calculated. So,
obviously the rows belongs to headline will participate for generating highest histogram
peak. Such rows are identified and removed. Later the upper and lower separated parts
are merged together (see Fig.6.4i) for maintaining right form of the word. This operation
of headline removal generates disconnected characters (see Fig.6.4i). After obtaining the
disconnected characters, the middle zone of the word is detected by removing the head line
and by locating the base line of a word. The head line and base line are detected by simple
horizontal projection of fore ground pixels (see Fig.6.3a). Please note that, the features
F1− F5 (details are given after) are calculated from middle zone of the word.

6.4.1.1 Coding based on loop position

Number of loops and their positions in the word image is a distinguishable property of
each word. To use this information as a feature, we find the center of gravity (C.G.) of each
existing loops in the image. Then, we normalize the x coordinate of the C.G.’s of these loops
(C.G.x in Eqn 6.1), with respect to the width of the word. The following Equation 6.1
is used for calculating this feature value. To find the loops, the word image pixels are
initially inverted (foreground pixels changed into background pixels and background pixels
are changed into foreground pixels) and then connected components are extracted from
the inverted image. Please note that, for avoiding the cases where foreground pixels are
connected with the bounding rectangle of the word image, we perform padding of one
background pixel along the perimeter of the image. Among the connected components, the
biggest one is the background component, so it is ignored, but other connected components
are considered as loops.

F 1
i = 10× (C.G.ix/C); 1 ≤ i ≤ Nb (6.1)

Where Nb is the number of loops and C.G.ix corresponds to x positions of C.G. of the
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loops in the word relative to image width C in pixels.

	  

(a) (b) 

(a) (b) 

(a) (b) 

(i) (a) Original image. (b) Headline re-
moved image

	  

(a) (b) 

(a) (b) 

(a) (b) 

(ii) (a) Inverted Image3 (b) Extracted loops3 (c) Fill up
loops are shown3

Figure 6.4: (i)The original and corresponding headline removed image. (ii) Techniques to
obtain loops in the image.

For example, the five loops in Fig.6.4ii-(a) are shown in Fig.6.4ii-(b), positions of five
loops are marked by 1, 2, 3, 4 and 5 in Fig 6.4ii-(a). The x coordinate of the C.G. for each
of the five loops, computed from left to right, are 11, 43, 55, 79 and 104 respectively, and
the width of the word is 140. Using these x-coordinates in the above formula and dividing
it by the word width (140) we get the shape code as 03357.

6.4.1.2 Coding based on background components

Background can provide useful information that helps in word spotting scheme. Run
length information of the background region between two consecutive characters of the
middle zone portion is used for this purpose. The background between two characters is
initially detected. Such background portions are marked in black in Fig. 6.5. Here, we have
ten components but we do not consider the leftmost and the rightmost components. We also

	  

(a) (b) 

(a) (b) 

(a) (b) 

Figure 6.5: Inverted busy zone portion of Fig.6.4i-(a)3.

do not consider the loops for background components. Thus the word shown in Fig.6.4i has
8 background components. After obtaining background components, horizontal scanning
is applied on each background component to calculate the maximum (Max) and minimum
(Min) horizontal runs among all the horizontal runs in each background components. For
each background component, the shape code feature is obtained by calculating two separate
code values, mentioned in Equation 6.2 and the final code is given by Equation 6.3.

3Figures are used in this thesis, with the written permission from [Arundhati Tarafdar, Ranju Mondal,
Srikanta Pal, Umapada Pal and Fumitaka Kimura, "Shape Code based Word-image Matching for Retrieval
of Indian Multi-lingual Documents", ICPR, 2010. c© 2010 IEEE.]
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F̄ 2
i = 10×Maxi/(ζ + 1)

F̂ 2
i = 10×Mini/(ζ + 1)

1 ≤ i ≤ Nb

ζ = max(Maxi)

(6.2) F 2 = F̄ 2
i _ F̂ 2

i (concatenating F̄ 2
i and F̂ 2

i )

(6.3)

Feature values are normalized through dividing by (τ + 1), where τ represents longest
horizontal run among all Maxi values, found in a word image. For each background com-
ponent, we get two code values (F̄ 2

i and F̂ 2
i ). So, if a word have Nb numbers of background

components then the length of the code string of the word would be 2×Nb.

6.4.1.3 Coding based on extreme points

To obtain this feature, each word is horizontally segmented into two parts through the
middle row between head line and base line. Now, from each disconnected component of
the upper and lower part, the locations of extreme points i.e. upper and lower extreme
points are calculated respectively and these extreme points are considered as feature values
(F3). The extreme points of upper and lower parts of Fig.6.4i-(b) are marked by gray dot
in Fig.6.6-(a) and 6.6-(b) respectively. Now six coding values are employed according to

	  

(a) (b) 

(a) (b) 

(a) (b) 

Figure 6.6: Local extreme points of (a) upper and (b) lower portions of a word shown in
Fig.6.4i-(a). Extreme points are marked by gray dot3.

the position of extreme points. We use code 1 if an extreme point lies above headline, code
2 if extreme point lies on headline portion, code 3 and 4 respectively, if extreme point lies
in upper and lower half of middle zone, code 5 if extreme point lies on baseline and finally
code 6 if extreme point lies in lower zone. For example, the code obtained from the Bangla
word shown in Fig.6.4i-(a) is 5234512415515351533353. Here components are used from
left to right to get positional information for coding. Since there are 22 extreme points in
Fig.6.6 (12 upper and 10 lower extreme points), so, the length of this coded string is 22.

6.4.1.4 Vertical shape based coding

In this coding scheme, the column positions (c) of the vertical lines like structure in a
word are located. Based on these positional values, the normalized coding is obtained by
using the following formula.
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F4 = (10× c)/C; C = Width of the image (6.4)

For example, the coding value of the word shown in Fig.6.4i-(a) is 1245577. Since the word
shown in Fig.6.4i-(a) has 7 vertical lines. The vertical line like structures are obtained
by finding the columns having long run of foreground pixels (black run). If the length of
black run is greater than 65% of the height of middle zone, such columns are considered as
vertical line like structures. If we get multiple vertical lines in consecutive columns, then
we will consider the last column among them and ignore the remaining ones (vertical bar,
having more than one pixel thickness).

6.4.1.5 Crossing based coding

The portion of the image between two consecutive vertical lines are divided into four
equal parts by dividing the intermediate region through three column positions (see Fig. 6.7).
After that, the number of transitions from foreground to background and/or background
to foreground in each of these three columns are counted. The coding (F5) is done based
on these crossing values.

	  

(a) (b) 

(a) (b) 

(a) (b) 

Figure 6.7: (a) Extracted vertical lines from the busy zone of Fig.6.4i-(a)3. (b) Example
of division of distance between two consecutive vertical lines into four equal parts3.

6.4.1.6 Coding based on C.G of foreground pixels

To calculate this feature, initially the image is divided into slits, based on the amount
of foreground pixels it contains. The full image is divided in such a manner, such that each
slit will contain τ amount of F.G pixels (τ is heuristically set to 100). So the total number
of slits, are not same and it depends on the number of foreground pixels. In general, longer
words will have more F.G pixels, hence it would have more number of slits and shorter
words will have less number of slits.

Three features (F6, F7, F8) are calculated from each slit, based on the position of center
of gravity (C.G), obtained from the locations of foreground pixels in the slit. As shown
in Fig.6.8, each slit (red rectangle) is divided into regions in 2 different ways. Firstly,
the slit is divided into 8 equal sized blocks. The horizontal (F6) and vertical (F7) shape
code for each block is mentioned in the image (left). This shape codes are nothing but
the coordinates of the blocks, e.g. the vertical and horizontal shape code of the middle
block is 2 and 2 respectively. Secondly, the slit portion is divided into three regions, as

151



6.4. OUTLINE OF THE PROPOSED APPROACH

shown in Fig.6.8 (right one). The shape code (F8) is given by the region number, where
the C.G. of foreground pixels belongs to (the code for each region is mentioned in the
Fig.6.8). As visible in the Fig. 6.8 that the image is divided into even number of small
blocks along horizontal and vertical direction. Based on these blocks, the three regions
marked in different colors are identified.	  

	  

	  

	  
	  

3 

(1,1) (1,2) 

(3,1) 

2 
1 (1,3) 

(2,1) (2,2)	   (2,3)	  

(3,2)	   (3,3)	  

Figure 6.8: C.G of foreground pixels based feature

6.4.2 Sequence Matching Techniques

After calculating the feature values and representing them in feature vectors, sequence
matching techniques are applied for performing the sequence matching between query and
target feature vectors. For matching query and target images, we applied basic level of
pruning by only considering those target words, whose width is at least greater than or
equal to the half of query’s width. Please note that, as we are also looking for partial
word matching, longer words are considered for matching. Based on the different features
described above, each candidate word image is described by numeric codes. The word-
searching problem can then be stated as finding a particular sequence/subsequence in the
codes of the candidate and query words. The procedure of matching word images then
become a measurement of the similarity between the code X = x1; ...;xm, representing
the features of the query word and the code Y = y1; ...; yn, representing the features of a
candidate word image. The process of finding similarity between two sequence X and Y
is described in the following sub section. We propose an combined matching approach for
calculating distance between the query and target sequence. This combined approach is
fabricated by sequentially linking two individual matching techniques : Longest common
sub-sequence and Levenshtein Distance. Use of LCSS helps to find the longest common
subsequence between two feature vectors, whereas Levenshtein Distance calculation helps
us to get total number of required edit operations for making one common sub-sequence
equal to another. This shape code based matching process is quite fast, compared to other
image matching techniques [Manmatha, R. Chengfeng and Riseman, 1996], [Khurshid et al.,
2012]. Thanks to the low dimensional features of shape code, LCSS is able to find quickly
the common subsequence, contrary to high dimensional column based features (refer to
Section 2.3.2.1 of Chapter 2). For detailed discussion on LCSS, please see Section 3.7.1
Chapter 3. The reason for choosing LCSS is that, in the presence of noise (we have some
noisy data), theoretically LCSS should show more accurate matching than DTW. It is
noteworthy to point out here that in LCSS, we use a matching threshold (0 < σ < 1) to
compare two points, coming from two sequences. These two points are considered as same
if their distance is less than σ. For our case, we considered σ = 0, i.e. we are looking for
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perfect match between two elements, in other words, we consider two codes are same if
and only if they are equal. After obtaining the longest common subsequence between two
feature vectors, we calculate Levenshtein Distance between these common subsequences.

6.4.2.1 Levenshtein Measure

This measure is defined as the minimum number of operations needed to transform one
string into other. Here an operation is defined as an insertion, deletion, or substitution of
a single code, or a transposition of two codes using Damerau Levenshtein 4 distance value.

S(i, j) =





j if i = 1; j > 1
i if i > 1; j = 1

min





S(i− 1, j) + 1
S(i, j − 1) + 1
S(i− 1, j − 1) + Cost

if i > 1; j > 1
(6.5)

Cost =

{
0 if Xi = Yj
1 if otherwise

(6.6)

The Levenshtein distance between two sequence X and Y is obtained by the value at
S(m,n)(Equation 6.5); where m = n = length of the common sub-sequence.

6.4.2.2 Adapted Matching Strategy

The features extracted from one query and one target image can be represented as:
QF = {g11,...p, ...., g81,...q} and TF = {g11,...p′ , g81,...q′}; {p, p′, q, q′} ∈ R+. The length of each
feature vectors i.e. f1..f8 are not same for a particular image and it could be different from
one image to another also. It may also occur that some features does not exists for some
particular images. For a particular query Qi, let’s say that it has t (t ∈ {1..8}) number
of existing features. Now, with reference to the query image, we choose all the target
images, which has k (k ≥ t − 1) numbers of existing features. After choosing the target
images and their relevant features, LCSS is applied on the corresponding features, extracted
from query and target images respectively, e.g we apply LCSS on g1Q of query and g1T of
target i.e. LCSS(g1Q, g

1
T )....LCSS(gkQ, g

k
T ) etc. LCSS will give the longest common sub-

sequence between the feature vectors. Hence, from the returned indexes of longest common
subsequences, we can obtain the 1st and last query and target element’s indexes, which are
common between both the feature vectors. Now the next task is to calculate Levenshtein
distance between these parts of query and target sequence. Levenshtein distance measure
is able to give the number of edit operation to be performed, for making two comparable
sequence equivalent. So, from each comparison of feature vectors, we can obtain the length
of longest common sub-sequence and it’s corresponding edit distance. The total length of

4http://www.levenshtein.net/index.html
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LCSS and total edit distance, for a particular target image is calculated by adding up all
the lengths of longest common sub-sequences and distances, obtained from each feature
vectors of a target image. In the Fig.6.10, only one feature vector matching is shown but
as explained before, LCSS is applied to all the feature vectors. For example, when LCSS
is applied to the following shown feature vector in Fig.6.10, the obtained result is shown
in Fig.6.9. After getting the first and last index of common sub-sequence, we calculate
edit distance between all the elements from target and query, whose index belongs in
between the first and last indexes of common sub-sequence, i.e. in this case, we calculate
Levenshtein distance between v1 = {1, 9, 2, 9, 4} and v2 = {1, 1, 4}

	   	  

Dataset 𝑵𝒐 𝑵𝒐 
Bangla 14 3234 
Hindi 15 4860 

𝑁! = No. of query images 
𝑁! = No. of target images Figure 6.9: Matching of elements by LCSS

Now for giving overall ranking of the nearest matches, a parametric weighting based
technique is applied to use the participation from both the measures, obtained from total
longest common sub-sequence and edit distance. If the ranking is only done by using
total longest common sub-sequence in descending order (higher the total length, closer the
match), then the obtained mean average precision (mAP) of the system is 0.557 and if
only the total edit distances is ranked in ascending order (lesser the total distance, closer
the match), mAP of the system becomes 0.241. From these result, we can observe that
ranking based on length of longest common sub-sequence is better than the one based on
edit distance. Although statistically the overall mAP, only by edit distance is not better
but we observe that for some candidates the edit distance works better than other one
(length of common subsequence). So, the following formula is used to obtain the combined
distance, by weighting individual participation of total distance and common sub-sequence
respectively.

Dcombo = α×D(QF , TF ) + {(1− α)× {Lmax −L (QF , TF )}} (6.7)

In the above where Equation 6.7, D(QF , TF ) represents the total Levenshtein distance
between query (QF ) and target (TF ) feature vectors. The notation L (QF , TF ) represents
the total length of common sub-sequences of query and target feature vectors (remember
that query and target can have 8 pairs of separate feature vectors), whereas Lmax represents
the maximum of such lengths. The reason of subtraction in the last term is to sort the
distance in descending order instead of ascending order (in contrast with usual way of
sorting the distance in ascending order). Now, when the combined distance (Dcombo) is
calculated, those distances are sorted in descending order and the mAP is calculated.
The value of α is set from the learning data set. Details of setting α is explained in the
experimental section. The Fig.6.10 shows the process of matching. The left container
(pinkish one) represents all the extracted feature vector from each of the target images
(N). The extracted feature vectors from the query image are shown in the right container
(blueish one). Each feature vector of query is matched with the corresponding feature
vector of target by LCSS algorithm.
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Figure 6.10: Feature level comparison by LCSS

6.5 Experimental Results

The proposed word spotting method is tested comprehensively on two types of docu-
ments. For this experiment, variety of printed documents (e.g. books, newspaper, maga-
zines etc) of Bangla, Devanagari scripts are considered. The above shown Table. 6.1 shows
the statistics of Bangla and Hindi dataset, used for this experiment.

Dataset Ñ N̂

Bangla 14 3234
Hindi 15 4860

Ñ = No. of query images
N̂ = No. of target images

Table 6.1: Statistics of the used dataset
A general experimental protocol of word spotting is followed here. Distance between the

query and target images are calculated and according to their dissimilarity values, the target
images are ranked. Mean average precision (mAP)5 is chosen to evaluate the performance
of the system. Initially, we heuristically set the value of α = 0.5 and calculate mAP by
determining the combined distance value from Equation 6.7. To verify the effectiveness of
the features F̄1− F̄5, we experimented the evaluation setup on original Bangla dataset and
we obtained mAP = 0.6831. Now to check the effect of the added features (F̄6− F̄8), we
used all the features together (i.e. F̄1 − F̄8) and we obtained mAP = 0.6935. So from
these accuracy values, it can be concluded that the added features (F̄6 − F̄8) have a little
positive impact but it is less computationally complex. The feature F̄6 − F̄8 takes 0.0035
sec. to compute, whereas other features i.e. F̄1 − F̄5 takes 0.0187 sec.6 to compute in
Intel Xeon CPU with 8 GB RAM 7. To check the robustness of the proposed technique,
we apply artificial Gaussian noise of difference intensities in the query and target images
respectively. The effect of noise can be visible in Fig.6.11. It is visible from Table 6.2. that
the effect of noise can highly affect the accuracy of the system. As shown from the Table
6.2. F1 − F8 are more robust compared to F̄1 − F̄5

As mentioned earlier, the value of α was chosen heuristically for performing all the
above mentioned experiments. But for the proper and unbiased selection of α, we use cross
validation technique. From each dataset, two queries are chosen randomly and the best

5http://en.wikipedia.org/wiki/Information retrieval#Mean average precision
6Averaged on 10 word images.
7Please note that, our implementation in MatLab is unoptimized. The computational speed of the

system can be further increased by optimizing the code.

155



6.6. CONCLUSION

Table 6.2: Accuracy in different level of added noise

σ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
A

P F1-F8 0.691 0.691 0.691 0.691 0.691 0.678 0.506 0.429 0.187 0.165
F1-F5 0.683 0.683 0.683 0.683 0.681 0.645 0.537 0.371 0.154 0.122

 

Original 𝜎 = 0.0              𝜎 = 0.1            𝜎 = 0.2            𝜎 = 0.3              𝜎 = 0.4            𝜎 = 0.5           𝜎 = 0.6             𝜎 = 0.7              𝜎 = 0.8          𝜎 = 0.9 

 

 

 

 

 

 

 

 

 

 

 𝜎 = 0.0 

 

Figure 6.11: Effect of noise in 2 Bangla and 2 Hindi words. The left most image in each
row is the original image whereas other noisy images (noise intensity: σ = 0 − 0.9) are
shown in respective columns (figures are best visible in digital copy).

value of α is searched. After obtaining this best value of α on two queries, this value is used
for all other remaining queries. This process is repeated 10 times and the average mAP
(A-mAP) is given as the final result of the system. When this setup of experimented for
Bangla and Hindi dataset respectively, we obtained A-mAP value as 0.7112 and 0.6464
respectively. When the same setup is experimented by only using feature set F̄1 − F̄5 on
Bangla and Hindi dataset respectively, we obtain A-mAP value of 0.6938 and 0.6358. So,
again it can be visible that the added feature F̄6 − F̄8 has helped to increase the accuracy
of the system.

6.6 Conclusion

This chapter presents a fast shape code based word matching technique, where the
dissimilarity between two words are measured by the parametric combination of LCSS and
Levenshtein distance. A strong advantage of this system is it’s speed whereas the robustness
is only tested on two Indian languages. To verify the robustness of the proposed method,
we would like to test it for other scripts also. There are some features, used in this chapter
(e.g. loops, vertical shape, back-ground),that would not be suited in other scripts. More
research work is needed to explore some robust and script independent set of features. In
future, we would like to adapt the proposed technique for spotting words in segmented
lines, instead of segmented words.

156





Publications

Journals

T. Mondal, N. Ragot, J.-Y. Ramel, and U. Pal, "Flexible Sequence Matching Tech-
nique : An Effective Learning-free Approach For Word Spotting", submit-
ted to Pattern Recognition, Elsevier.

International Conferences

T. Mondal, N. Ragot, J.-Y. Ramel, and U. Pal, "A Fast Word Retrieval Technique
Based on Kernelized Locality Sensitive Hashing", 2013 12th International
Conference on Document Analysis and Recognition, pp. 1195-1199, Aug. 2013.

T. Mondal, N. Ragot, J.-y. Ramel, and U. Pal, "Flexible Sequence Matching Tech-
nique: Application to Word Spotting in Degraded Documents", in ICFHR.
IEEE, Sep. 2014, pp. 210-215.

T. Mondal, N. Ragot, J.-y. Ramel, and U. Pal, "Exemplary Sequence Cardinality
: An Effective Application for Word Spotting", in ICDAR. IEEE, Aug. 2015.

T. Mondal, N. Ragot, J.-y. Ramel, and U. Pal, "Performance Evaluation of DTW
and its Variants for Word Spotting in Degraded Documents", in ICDAR.
IEEE, Aug. 2015.

T. Mondal, A. Tarafdar, N. Ragot, J.-y. Ramel, and U. Pal, "Improved Shape Code
Based Word Matching For Multi-script Documents", to be appeared in Pro-
ceedings of the 3rd Asian Conference on Pattern Recognition, Nov. 2015.

T. Mondal, N. Ragot, J.-y. Ramel, and U. Pal, "Constrained and Parametric
Dynamic Programming for Word Image retrieval", Submitted in Document
Analysis Systems, 2016.

F. Rayar, T. Mondal, S. Barrat, F. Bouali and G. Venturini "Visual Analysis System
for Word Features and Distances Qualitative Assessment", Submitted in
Document Analysis Systems, 2016.



Bibliography

[Adamek and O’Connor, 2004] Adamek, T. and O’Connor, N. (2004). A Multiscale Repre-
sentation Method for Nonrigid Shapes With a Single Closed Contour. IEEE Transactions
on Circuits and Systems for Video Technology, 14(5):742–753.

[Adamek et al., 2006] Adamek, T., O’Connor, N. E., and Smeaton, A. F. (2006). Word
matching using single closed contours for indexing handwritten historical documents.
IJDAR, 9(2-4):153–165.

[Agazzi and Kuo, 1994] Agazzi, O. and Kuo, S.-S. K. S.-S. (1994). Keyword spotting in
poorly printed documents using pseudo 2-D hidden Markov models. TPAMI, 16(8):842–
848.

[Agrawal et al., 1993] Agrawal, R., Faloutsos, C., and Swami, A. N. (1993). Efficient Sim-
ilarity Search In Sequence Databases. pages 69–84.

[Al-Naymat et al., 2009] Al-Naymat, G., Chawla, S., and Taheri, J. (2009). SparseDTW:
A novel approach to speed up dynamic time warping. Conferences in Research and
Practice in Information Technology Series, 101(2007):117–127.

[Albrecht, 2009] Albrecht, T. (2009). Dynamic Time Warping (DTW). pages 69–85.

[Aldavert et al., 2013] Aldavert, D., Rusinol, M., Toledo, R., and Llados, J. (2013). Inte-
grating Visual and Textual Cues for Query-by-String Word Spotting. In 12th Interna-
tional Conference on Document Analysis and Recognition, pages 511–515. IEEE.

[Almazán et al., 2012] Almazán, J., Gordo, A., Fornés, A., and Valveny, E. (2012). Effi-
cient Exemplar Word Spotting. Procedings of the British Machine Vision Conference
2012, pages 67.1—-67.11.

[Almazan et al., 2013] Almazan, J., Gordo, A., Fornes, A., and Valveny, E. (2013). Hand-
written Word Spotting with Corrected Attributes. ICCV, pages 1017–1024.

[Antonio Cardone, Ra K. Gupta, 2003] Antonio Cardone, Ra K. Gupta, M. K. (2003). A
survey of shape similarity assessment algorithms for product design and manufacturing
applications. Journal of Computing and Information Science in Engineering, 3:109–118.

[Anurag Bhardwaj, Damien Jose, 2008] Anurag Bhardwaj, Damien Jose, V. G. (2008).
Script Independent Word Spotting in Multilingual Documents. Second International
Workshop Cross Lingual Information Access, pages 48–54.

159



BIBLIOGRAPHY

[Attalla and Siy, 2005] Attalla, E. and Siy, P. (2005). Robust shape similarity retrieval
based on contour segmentation polygonal multiresolution and elastic matching. Pattern
Recognition, 38(12):2229–2241.

[Bai et al., 2009] Bai, S., Li, L., and Tan, C. L. (2009). Keyword Spotting in Document Im-
ages through Word Shape Coding. In 2009 10th International Conference on Document
Analysis and Recognition, pages 331–335. IEEE.

[Benedikt et al., 2008] Benedikt, L., Kajic, V., Cosker, D., Rosin, P. L., and Marshall,
D. (2008). Facial Dynamics in Biometric Identification. In Proceedings of the British
Machine Vision Conference.

[Cao et al., 2009] Cao, H., Bhardwaj, A., and Govindaraju, V. (2009). A probabilistic
method for keyword retrieval in handwritten document images. Pattern Recognition,
42(12):3374–3382.

[Cao and Govindaraju, 2007] Cao, H. and Govindaraju, V. (2007). Template-free word
spotting in low-quality manuscripts. ICPR, pages 1–5.

[Chan et al., 2006] Chan, J., Ziftci, C., and Forsyth, D. (2006). Searching off-line arabic
documents. In CVPR, volume 2, pages 1455–1462.

[Charikar, 2002] Charikar, M. S. (2002). Similarity estimation techniques from rounding
algorithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing - STOC ’02, page 380, New York, New York, USA. ACM Press.

[Chaudhuri and Pal, 1997] Chaudhuri, B. and Pal, U. (1997). An OCR system to read
two Indian language scripts: Bangla and Devnagari (Hindi). Proceedings of the Fourth
International Conference on Document Analysis and Recognition, 2:1011 – 1015.

[Chaudhuri and Pal, 1998] Chaudhuri, B. and Pal, U. (1998). A complete printed Bangla
OCR system. Pattern Recognition, 31(5):531–549.

[Chen et al., 1995] Chen, F. R., Bloomberg, D. S., and Wilcox, L. D. (1995). Spotting
phrases in lines of imaged text. In Vincent, L. M. and Baird, H. S., editors, IS&T/SPIE’s
Symposium on Electronic Imaging: Science & Technology, pages 256–269. International
Society for Optics and Photonics.

[Chen, 2011] Chen, H. (2011). Robust Text Detection In Natural Images With Edge-
Enhanced Maximally Stable Extremal Regions. In Image Processing (ICIP), 18th IEEE
International Conference on IEEE.

[Chen et al., 2105] Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., and
Batista, G. (2105). The UCR Time Series Classification Archive.

[Choudhary et al., 2013] Choudhary, A., Rishi, R., and Ahlawat, S. (2013). A New Charac-
ter Segmentation Approach for Off-Line Cursive Handwritten Words. Procedia Computer
Science, 17:88–95.

[Chu et al., 2002] Chu, S., Keogh, E., and Hart, D. (2002). Iterative Deepening Dynamic
Time Warping for Time Series. Time, pages 195–212.

160



BIBLIOGRAPHY

[Cristea, 2002] Cristea, P. D. (2002). Conversion of nucleotides sequences into genomic
signals. Journal of cellular and molecular medicine, 6(2):279–303.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of Oriented Gradients
for Human Detection. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE.

[Das et al., 1997] Das, G., Gunopulos, D., and Mannila, H. (1997). Principles of Data
Mining and Knowledge Discovery, volume 1263 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[Dawson and Efford, 2009] Dawson, D. K. and Efford, M. G. (2009). Bird population
density estimated from acoustic signals. Journal of Applied Ecology, 46(6):1201–1209.

[Dietrich et al., 2004] Dietrich, C., Palm, G., Riede, K., and Schwenker, F. (2004). Classi-
fication of bioacoustic time series based on the combination of global and local decisions.
Pattern Recognition, 37(12):2293–2305.

[Ding et al., 2008] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E.
(2008). Querying and mining of time series data: experimental comparison of represen-
tations and distance measures. Proceedings of the VLDB Endowment, 1:1542–1552.

[Dovgalecs et al., 2013] Dovgalecs, V., Burnett, A., Tranouez, P., Nicolas, S., and Heutte,
L. (2013). Spot It! Finding Words and Patterns in Historical Documents. In ICDAR,
pages 1039–1043. IEEE.

[Eads et al., 2002] Eads, D., Hill, D., Davis, S., Perkins, S., Ma, J., Porter, R., and Theiler,
J. (2002). Genetic Algorithms and Support Vector Machines for Time Series Classifica-
tion. Proceedings of SPIE, 4787:74–85.

[Edwards, J. Teh, Y. W. Forsyth, D. Bock, R. Maire, M. Vesom, 2004] Edwards, J. Teh,
Y. W. Forsyth, D. Bock, R. Maire, M. Vesom, G. (2004). Making latin manuscripts
searchable using gHMM’s. Advances in Neural Information Processing Systems, 17:385–
392.

[Faloutsos et al., 1994] Faloutsos, C., Ranganathan, M., and Manolopoulos, Y. (1994).
Fast subsequence matching in time-series databases. ACM SIGMOD Record, 23(2):419–
429.

[Fernández et al., 2007] Fernández, S., Graves, A., and Schmidhuber, J. (2007). An ap-
plication of recurrent neural networks to discriminative keyword spotting. The 17th
international conference on Artificial neural networks, pages 220–229.

[Fernandez-Mota et al., 2014] Fernandez-Mota, D., Riba, P., Fornes, A., and Llados, J.
(2014). On the Influence of Key Point Encoding for Handwritten Word Spotting. In
14th International Conference on Frontiers in Handwriting Recognition, pages 476–481.

[Fischer et al., 2013] Fischer, A., Frinken, V., Bunke, H., and Suen, C. Y. (2013). Improv-
ing HMM-Based Keyword Spotting with Character Language Models. ICDAR, pages
506–510.

161



BIBLIOGRAPHY

[Fischer et al., 2010a] Fischer, A., Keller, A., Frinken, V., and Bunke, H. (2010a). HMM-
based Word Spotting in Handwritten Documents Using Subword Models. ICPR, pages
3416–3419.

[Fischer et al., 2012] Fischer, A., Keller, A., Frinken, V., and Bunke, H. (2012). Lexicon-
free handwritten word spotting using character HMMs. Pattern Recognition Letters,
33(7):934–942.

[Fischer et al., 2010b] Fischer, A., Riesen, K., and Bunke, H. (2010b). Graph Similarity
Features for HMM-Based Handwriting Recognition in Historical Documents. In ICFHR,
pages 253–258. IEEE.

[Frinken et al., 2012] Frinken, V., Fischer, A., Manmatha, R., and Bunke, H. (2012).
A novel word spotting method based on recurrent neural networks. IEEE TPAMI,
34(2):211–224.

[Garofolo et al., 1993] Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., Dahlgren,
N., and Zue, V. (1993). TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT
).

[Gatos et al., 2014] Gatos, B., Louloudis, G., Causer, T., Grint, K., Romero, V., Sánchez,
J. A., Toselli, A. H., and Vidal, E. (2014). Ground-Truth production in the tranScrip-
torium project. In 11th IAPR International Workshop on Document Analysis Systems
(DAS).

[Gatos and Pratikakis, 2009] Gatos, B. and Pratikakis, I. (2009). Segmentation-free Word
Spotting in Historical Printed Documents. ICDAR, pages 271–275.

[Gatos et al., 2006] Gatos, B., Pratikakis, I., and Perantonis, S. (2006). Adaptive degraded
document image binarization. PR, 39(3):317–327.

[Giotis et al., 2015] Giotis, A. P., Sfikas, G., Nikou, C., and Gatos, B. (2015). Shape-based
Word Spotting in Handwritten Document Images. pages 561–565.

[Górecki, 2014] Górecki, T. (2014). Using derivatives in a longest common subsequence
dissimilarity measure for time series classification. Pattern Recognition Letters, 45:99–
105.

[Górecki and Luczak, 2014] Górecki, T. and Luczak, M. (2014). Non-isometric transforms
in time series classification using DTW. Knowledge-Based Systems, 61:98–108.

[Górecki and Luczak, 2015] Górecki, T. and Luczak, M. (2015). Multivariate time series
classification with parametric derivative dynamic time warping. Expert Systems with
Applications, 42(5):2305–2312.

[Güler and Ubeyli, 2005] Güler, I. and Ubeyli, E. D. (2005). Adaptive neuro-fuzzy in-
ference system for classification of EEG signals using wavelet coefficients. Journal of
neuroscience methods, 148:113–121.

162



BIBLIOGRAPHY

[Gullo et al., 2009] Gullo, F., Ponti, G., Tagarelli, A., and Greco, S. (2009). A time series
representation model for accurate and fast similarity detection. Pattern Recognition,
42:2998–3014.

[Günter and Bunke, 2005] Günter, S. and Bunke, H. (2005). Off-line cursive handwriting
recognition using multiple classifier systems on the influence of vocabulary, ensemble,
and training set size. Optics and Lasers in Engineering, 43(3-5):437–454.

[Haralick and Shapiro, 1992] Haralick, R. M. and Shapiro, L. G. (1992). Computer and
Robot Vision.

[Howe, 2013] Howe, N. R. (2013). Part-Structured Inkball Models for One-Shot Handwrit-
ten Word Spotting. ICDAR, pages 582–586.

[Hüsken and Stagge, 2003] Hüsken, M. and Stagge, P. (2003). Recurrent neural networks
for time series classification. Neurocomputing, 50:223–235.

[Indyk and Motwani, 1998] Indyk, P. and Motwani, R. (1998). Approximate nearest neigh-
bors. In Proceedings of the thirtieth annual ACM symposium on Theory of computing -
STOC ’98, pages 604–613, New York, USA. ACM Press.

[Itakura, 1975] Itakura, F. (1975). Minimum prediction residual principle applied to speech
recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1):67–
72.

[Jagadish and Faloutsos, 1998] Jagadish, H. and Faloutsos, C. (1998). Efficient retrieval
of similar time sequences under time warping. In ICDE, pages 201–208. IEEE Comput.
Soc.

[Jalba et al., 2005] Jalba, A. C., Wilkinson, M. H. F., Roerdink, J. B. T. M., Bayer, M. M.,
and Juggins, S. (2005). Automatic diatom identification using contour analysis by mor-
phological curvature scale spaces. Machine Vision and Applications, 16(4):217–228.

[Jawahar et al., 2004] Jawahar, C. V., Meshesha, M., and Balasubramanian, A. (2004).
Searching in Document Images. ICVGIP, pages 622–627.

[Jeong et al., 2011] Jeong, Y. S., Jeong, M. K., and Omitaomu, O. A. (2011). Weighted
dynamic time warping for time series classification. In Pattern Recognition, volume 44,
pages 2231–2240. Elsevier.

[Jiahong Yuan, 2008] Jiahong Yuan, M. L. (2008). Speaker identification on the SCOTUS
corpus. Proceedings of Acoustics.

[Keogh et al., 2001] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001).
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases.
Knowledge and Information Systems, 3(3):263–286.

[Keogh and Kasetty, 2003] Keogh, E. and Kasetty, S. (2003). On the Need for Time Series
Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Mining and
Knowledge Discovery, 7(4):349–371.

163



BIBLIOGRAPHY

[Keogh and Ratanamahatana, 2005] Keogh, E. and Ratanamahatana, C. A. (2005). Exact
indexing of dynamic time warping. Knowledge and Information Systems, 7(3):358–386.

[Keogh and Pazzani, 2000] Keogh, E. J. and Pazzani, M. J. (2000). Scaling up dynamic
time warping for datamining applications. KDD, pages 285–289.

[Keshet et al., 2009] Keshet, J., Grangier, D., and Bengio, S. (2009). Discriminative key-
word spotting. Speech Communication, 51(4):317–329.

[Kessentini et al., 2013] Kessentini, Y., Chatelain, C., and Paquet, T. (2013). Word Spot-
ting and Regular Expression Detection in Handwritten Documents. In ICDAR, pages
516–520. IEEE.

[Kessentini and Paquet, 2015] Kessentini, Y. and Paquet, T. (2015). Keyword spotting in
handwritten documents based on a generic text line HMM and a SVM verification. In
ICDAR.

[Khurshid et al., 2012] Khurshid, K., Faure, C., and Vincent, N. (2012). Word spotting in
historical printed documents using shape and sequence comparisons. Pattern Recogni-
tion, 45(7):2598–2609.

[Kolcz et al., 2000] Kolcz, A., Alspector, J., and Augusteijn, M. (2000). A line-oriented
approach to word spotting in handwritten documents. Pattern Analysis & Applications,
3(2):153–168.

[Kulbacki et al., 2002] Kulbacki, M., Kulbacki, M., Segen, J., Segen, J., Bak, A., and
Bak, A. (2002). Unsupervised Learning Motion Models Using Dynamic Time Warping.
Systems Research, (July 2015):1–10.

[Kulis and Grauman, 2009] Kulis, B. and Grauman, K. (2009). Kernelized locality-
sensitive hashing for scalable image search. 2009 IEEE 12th International Conference
on Computer Vision, (Iccv):2130–2137.

[Latecki et al., 2007a] Latecki, L. J., Koknar-tezel, S., Wang, Q., and Megalooikonomou,
V. (2007a). Sequence Matching Capable of Excluding Outliers. In Int. Conf. on Knowl-
edge Discovery and Data Mining (KDD).

[Latecki et al., 2007b] Latecki, L. J., Megalooikonomou, V., Wang, Q., and Yu, D. (2007b).
An elastic partial shape matching technique. Pattern Recognition, 40(11):3069–3080.

[Latecki et al., 2007c] Latecki, L. J., Wang, Q., Koknar-Tezel, S., and Megalooikonomou,
V. (2007c). Optimal Subsequence Bijection. ICDM, pages 565–570.

[Lavrenko et al., 2004] Lavrenko, V., Rath, T., and Manmatha, R. (2004). Holistic word
recognition for handwritten historical documents. First International Workshop on Doc-
ument Image Analysis for Libraries, Proceedings., pages 278–287.

[Lew et al., 2006a] Lew, M., Sebe, N., Djeraba, C., and Jain, R. (2006a). Content-based
multimedia information retrieval: State of the art and challenges. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMCCAP), 2(1):1–19.

164



BIBLIOGRAPHY

[Lew et al., 2006b] Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. (2006b). Content-
based multimedia information retrieval. ACM Transactions on Multimedia Computing,
Communications, and Applications, 2(1):1–19.

[Leydier et al., 2005] Leydier, Y., Le Bourgeois, F., and Emptoz, H. (2005). Omnilingual
segmentation-free word spotting for ancient manuscripts indexation. In ICDAR, volume
2005, pages 533–537 Vol. 1. IEEE.

[Leydier et al., 2007] Leydier, Y., Lebourgeois, F., and Emptoz, H. (2007). Text search for
medieval manuscript images. Pattern Recognition, 40(12):3552–3567.

[Li and Yang, 2013] Li, H. and Yang, L. (2013). Accurate and Fast Dynamic Time Warp-
ing. Advanced Data Mining and Applications, pages 133–144.

[Lin-Lin, 2009] Lin-Lin, L. (2009). Extraction of Textual Information from Images for
Information Retrieval. PhD thesis, National University of Singapore.

[Listgarten et al., 2005] Listgarten, J., Neal, R. M., Roweis, S. T., and Emili, A. (2005).
Multiple Alignment of Continuous Time Series. Advances in Neural Information Pro-
cessing Systems, 17(17):817–824.

[Lu et al., 2008] Lu, S., Li, L., and Tan, C. L. (2008). Document image retrieval through
word shape coding. TPAMI, 30(11):1913–8.

[Lu and Tan, 2008] Lu, S. and Tan, C. L. (2008). Retrieval of machine-printed Latin
documents through Word Shape Coding. Pattern Recognition, 41(5):1799–1809.

[Lu and Tan, 2002] Lu, Y. and Tan, C. L. (2002). Word spotting in Chinese document
images without layout analysis. In International Conference on Pattern Recognition,
volume 3, pages 57–60. IEEE Comput. Soc.

[Lu and Tan, 2004] Lu, Y. and Tan, C. L. (2004). Information retrieval in document image
databases. IEEE Transactions on Knowledge and Data Engineering, 16(11):1398–1410.

[Manmatha, R. Chengfeng and Riseman, 1996] Manmatha, R. Chengfeng, H. and Rise-
man, E. (1996). Word spotting: a new approach to indexing handwriting. In CVPR,
pages 631–637. IEEE Comput. Soc. Press.

[Manthalkar et al., 2003] Manthalkar, R., Biswas, P., and Chatterji, B. (2003). Rotation
and scale invariant texture features using discrete wavelet packet transform. Pattern
Recognition Letters, 24(14):2455–2462.

[Marti and Bunke, 2001] Marti, U. and Bunke, H. (2001). Using a statistical language
model to improve the performance of an HMM-based cursive handwriting recognition
system. International Journal of Pattern Recognition and . . . , 15:65–90.

[Mayer and Zinke, 2006] Mayer, D. and Zinke, A. (2006). Iterative multi scale dynamic
time warping. Universität Bonn, CG-2006/1.

165



BIBLIOGRAPHY

[Meshesha and Jawahar, 2008a] Meshesha, M. and Jawahar, C. V. (2008a). Matching word
images for content-based retrieval from printed document images. International Journal
of Document Analysis . . . , 11(1):29–38.

[Meshesha and Jawahar, 2008b] Meshesha, M. and Jawahar, C. V. (2008b). Match-
ing word images for content-based retrieval from printed document images. IJDAR,
11(1):29–38.

[Moghaddam and Cheriet, 2009] Moghaddam, R. F. and Cheriet, M. (2009). Application
of Multi-Level Classifiers andClustering for Automatic Word Spotting in Historical Doc-
ument Images. ICDAR, pages 511–515.

[Mondal et al., ] Mondal, T., Ragot, N., and Ramel, J.-y. Flexible Sequence Matching
Technique : Application to Word Spotting in Degraded Documents. 2014 14th Interna-
tional Conference on Frontiers in Handwriting Recognition.

[Mondal et al., 2015a] Mondal, T., Ragot, N., and Ramel, J.-y. (2015a). Exemplary Se-
quence Cardinality : An Effective Application for Word Spotting. In ICDAR.

[Mondal et al., 2014] Mondal, T., Ragot, N., Ramel, J.-y., and Pal, U. (2014). Flexible
Sequence Matching Technique: Application to Word Spotting in Degraded Documents.
In ICFHR, pages 210–215. IEEE.

[Mondal et al., 2015b] Mondal, T., Ragot, N., Ramel, J.-Y., and Pal, U. (2015b). Perfor-
mance Evaluation of DTW and its Variants for Word Spotting in Degraded Documents.
In ICDAR.

[Mondal et al., 2009] Mondal, T., Ragot, N., Ramel, J.-y., Pal, U., Rabelais, U. F., and
Informatique, L. (2009). A Fast Word Retrieval Technique Based on Kernelized Locality
Sensitive Hashing ïĆğ A fast word retrieval approach based on KLSH , which defines
hash functions using arbitrary kernel , which are locality sensitive , thereby permitting
sub linear time approxi. 139(2007):4700.

[Munich and Perona, 1999] Munich, M. and Perona, P. (1999). Continuous dynamic time
warping for translation-invariant curve alignment with applications to signature verifi-
cation. ICCV, 1:108–115.

[Nagendar and Jawahar, 2015] Nagendar, G. and Jawahar, C. V. (2015). Efficient Word
Image Retrieval using Fast DTW Distance.

[Nakayama, 1994] Nakayama, T. (1994). Modeling Content Identification from Document
Images. Proceedings Fourth Conference Applied Natural Language Processing (ANLP
’,94), pages 22–27.

[Nakayama, 1996] Nakayama, T. (1996). Content-Oriented Categorization of Document
Images. In Proceedings of the 16th International Conference on Computational Linguis-
tics, pages 818–823.

166



BIBLIOGRAPHY

[Niennattrakul and Ratanamahatana, 2007] Niennattrakul, V. and Ratanamahatana,
C. A. (2007). On Clustering Multimedia Time Series Data Using K-Means and Dy-
namic Time Warping. In 2007 International Conference on Multimedia and Ubiquitous
Engineering (MUE’07), pages 733–738. IEEE.

[Nikolaou et al., 2010] Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., and
Papamarkos, N. (2010). Segmentation of historical machine-printed documents using
Adaptive Run Length Smoothing and skeleton segmentation paths. Image and Vision
Computing, 28(4):590–604.

[Nobuyuki, 1979] Nobuyuki, O. (1979). A Threshold Selection Method from Gray-Level
Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62–66.

[Oka, 1998] Oka, R. (1998). Spotting method for classification of real world data. The
Computer Journal, 41(8):1–6.

[Pal et al., 2012] Pal, U., Jayadevan, R., and Sharma, N. (2012). Handwriting Recogni-
tion in Indian Regional Scripts. ACM Transactions on Asian Language Information
Processing, 11(1):1–35.

[Perronnin and Rodriguez-Serrano, 2009] Perronnin, F. and Rodriguez-Serrano, J. a.
(2009). Fisher Kernels for Handwritten Word-spotting. ICDAR, pages 106–110.

[Plamondon and Srihari, 2000] Plamondon, R. and Srihari, S. (2000). Online and off-
line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1):63–84.

[Prasad et al., 2001] Prasad, B. G., Gupta, S. K., and Biswas, K. K. (2001). Color and
Shape Index for Region-Based Image Retrieval. pages 716–728.

[R. Manmatha, 2003] R. Manmatha, T. M. R. (2003). Indexing of Handwritten Historical
Documents - Recent Progress. Proceedings of Symposium on Document Image Under-
standing Technology (SDIUT), pages 77–85.

[Rama, 2013] Rama, T. (2013). Phonotactic diversity predicts the time depth of the world’s
language families. PloS one, 8(5):e63238.

[Ratanamahatana, 2005] Ratanamahatana, C. (2005). Improving efficiency and effective-
ness of dynamic time warping in large time series databases. PhD thesis, UNIVERSITY
OF CALIFORNIA RIVERSIDE.

[Ratanamahatana and Keogh, 2004a] Ratanamahatana, C. and Keogh, E. (2004a). Ev-
erything you know about dynamic time warping is wrong. Third Workshop on Mining
Temporal and Sequential Data, pages 22–25.

[Ratanamahatana and Keogh, 2005] Ratanamahatana, C. A. and Keogh, E. (2005). Three
myths about dynamic time warping data mining. In Proceedings of SIAM International
Conference on Data Mining (SDM’05), pages 506–510.

167



BIBLIOGRAPHY

[Ratanamahatana and Keogh, 2004b] Ratanamahatana, C. A. C. and Keogh, E. (2004b).
Making time-series classification more accurate using learned constraints. Proceedings of
SIAM, pages 11–22.

[Rath and Manmatha, 2003] Rath, T. M. and Manmatha, R. (2003). Word image match-
ing using dynamic time warping. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2:521–527.

[Rath and Manmatha, 2006] Rath, T. M. and Manmatha, R. (2006). Word spotting for
historical documents. IJDAR, 9(2-4):139–152.

[Rath et al., 2004] Rath, T. M., Manmatha, R., and Lavrenko, V. (2004). A Search Engine
for Historical Manuscript Images. In ACM SIGIR, pages 369–376.

[Riba and Llad, 2015] Riba, P. and Llad, J. (2015). Handwritten Word Spotting by Inexact
Matching of Grapheme Graphs. pages 781–785.

[Rodriguez and Perronnin, 2008] Rodriguez, J. and Perronnin, F. (2008). Unsupervised
writer style adaptation for handwritten word spotting. ICPR, pages 1–4.

[Rodríguez-Serrano and Perronnin, 2009] Rodríguez-Serrano, J. a. and Perronnin, F.
(2009). Handwritten word-spotting using hidden Markov models and universal vocabu-
laries. Pattern Recognition, 42(9):2106–2116.

[Rothacker et al., 2013] Rothacker, L., Rusinol, M., and Fink, G. a. (2013). Bag-of-
Features HMMs for Segmentation-Free Word Spotting in Handwritten Documents. IC-
DAR, pages 1305–1309.

[Rothfeder et al., 2003] Rothfeder, J. L., Feng, S., and Rath, T. M. (2003). Using Corner
Feature Correspondences to Rank Word Images by Similarity. 2003 Conference on
Computer Vision and Pattern Recognition Workshop, 3.

[Roverso, 2000] Roverso, D. (2000). Multivariate Temporal Classification By Windowed
Wavelet Decomposition And Recurrent Neural Networks. In 3rd ANS International Top-
ical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine Interface.

[Roy et al., 2013] Roy, U., Sankaran, N., Sankar, K. P., and Jawahar, C. (2013). Character
N-Gram Spotting on Handwritten Documents Using Weakly-Supervised Segmentation.
In ICDAR, pages 577–581. IEEE.

[Rusiñol et al., 2011] Rusiñol, M., Aldavert, D., Toledo, R., and Lladós, J. (2011).
Browsing Heterogeneous Document Collections by a Segmentation-Free Word Spotting
Method. 2011 International Conference on Document Analysis and Recognition, pages
63–67.

[Rusiñol et al., 2015] Rusiñol, M., Aldavert, D., Toledo, R., and Lladós, J. (2015). Ef-
ficient segmentation-free keyword spotting in historical document collections. Pattern
Recognition, 48(2):545–555.

168



BIBLIOGRAPHY

[Sakoe and Chiba, 1978] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43–49.

[Salvador and Chan, 2007] Salvador, S. and Chan, P. (2007). FastDTW : Toward Accurate
Dynamic Time Warping in Linear Time and Space. Intell. Data Anal., 11(5):561–580.

[Sarkar, 2013] Sarkar, S. (2013). Word Spotting in Cursive Handwritten Documents Using
Modified Character Shape Codes, volume 178 of Advances in Intelligent Systems and
Computing. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Saykol et al., 2004] Saykol, E., Sinop, A. K., Güdükbay, U., Ulusoy, O., and Cetin, a. E.
(2004). Content-based retrieval of historical Ottoman documents stored as textual im-
ages. TIP, 13(3):314–25.

[Senior and Robinson, 1998] Senior, A. and Robinson, A. (1998). An off-line cursive hand-
writing recognition system. TPAMI, 20(3):309–321.

[Shijian and Lim Tan, 2008] Shijian, L. and Lim Tan, C. (2008). Script and language
identification in noisy and degraded document images. IEEE transactions on pattern
analysis and machine intelligence, 30(1):14–24.

[Shijian Lu, Chew Lim Tan, 2006] Shijian Lu, Chew Lim Tan, W. H. (2006). Script and
language identification in degraded and distorted document images. National Conference
on Artificial Intelligence, pages 769–774.

[Smeaton and Spitz, 1997] Smeaton, A. and Spitz, A. (1997). Using character shape cod-
ing for information retrieval. In Proceedings of the Fourth International Conference on
Document Analysis and Recognition, volume 2, pages 974–978. IEEE Comput. Soc.

[Smolinski et al., 2008] Smolinski, T. G., Milanova, M. G., and Hassanien, A.-E., editors
(2008). Applications of Computational Intelligence in Biology, volume 122 of Studies in
Computational Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Spitz, 1997] Spitz, A. (1997). Determination of the script and language content of
document images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(3):235–245.

[Srihari et al., 2006] Srihari, S., Srinivasan, H., Babu, P., and Bhole, C. (2006). Spotting
words in handwritten Arabic documents. In Electronic Imaging, pages 606702–606702–
12. International Society for Optics and Photonics.

[Stamatopoulos et al., 2010] Stamatopoulos, N., Gatos, B., and Georgiou, T. (2010). Page
frame detection for double page document images. DAS, pages 401–408.

[Sudholt et al., 2015] Sudholt, S., Rothacker, L., and Fink, G. A. (2015). Learning Local
Image Descriptors for Word Spotting. pages 651–655.

[Tak, 2008] Tak, Y.-S. (2008). Pruning and Matching Scheme for Rotation Invariant Leaf
Image Retrieval. KSII Transactions on Internet and Information Systems, 2(6):280–298.

169



BIBLIOGRAPHY

[Tan et al., 2002] Tan, C. L., Huang, W., Yu, Z., and Xu, Y. (2002). Imaged document
text retrieval without OCR. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 24(6):838–844.

[Tan et al., 2003] Tan, C. L. I. M., Huang, W., Sung, S. A. M. Y., Yu, Z., and Xu, Y. I.
(2003). Text Retrieval from Document Images Based on Word Shape Analysis. Applied
Intelligence, 18(3):257–270.

[Tarafdar et al., 2010] Tarafdar, A., Mondal, R., Pal, S., Pal, U., and Kimura, F. (2010).
Shape Code Based Word-Image Matching for Retrieval of Indian Multi-lingual Docu-
ments. In ICPR, pages 1989–1992. IEEE.

[Terasawa and Tanaka, 2009] Terasawa, K. and Tanaka, Y. (2009). Slit Style HOG Feature
for Document Image Word-Spotting. ICDAR, pages 116–120.

[Torralba et al., 2008] Torralba, A., Fergus, R., and Weiss, Y. (2008). Small codes and
large image databases for recognition. In 2008 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE.

[Toselli and Vidal, 2013] Toselli, A. H. and Vidal, E. (2013). Fast HMM-Filler Approach
for Key Word Spotting in Handwritten Documents. ICDAR, pages 501–505.

[Trifa et al., 2007] Trifa, V., Girod, L., Collier, T. C., Blumstein, D., and Taylor, C. E.
(2007). Automated Wildlife Monitoring Using Self-Configuring Sensor Networks De-
ployed in Natural Habitats. Center for Embedded Network Sensing.

[Übeyli, 2008] Übeyli, E. D. (2008). Wavelet/mixture of experts network structure for
EEG signals classification. Expert Systems with Applications, 34(3):1954–1962.

[Vasilopoulos and Kavallieratou, 2013] Vasilopoulos, N. and Kavallieratou, E. (2013). A
classification-free word-spotting system. In SPIE, volume 8658, page 86580F.

[Vincenzo, 2002] Vincenzo, P. (2002). Variation in the function of Eagle Owl vocal be-
haviour: territorial defence and intra-pair communication? Ethology, Ecology & Evolu-
tion, 14(3):275–281.

[Vlachos et al., 2003] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and Keogh, E. J.
(2003). Indexing multi-dimensional time-series with support for multiple distance mea-
sures. In KDD, pages 216–225, New York, USA. ACM Press.

[Vlachos et al., 2002] Vlachos, M., Kollios, G., and Gunopulos, D. (2002). Discovering
similar multidimensional trajectories. In ICDE, pages 673–684. IEEE Comput. Soc.

[Wakuya and Shida, 2002] Wakuya, H. and Shida, K. (2002). Time Series Prediction with
Neural Network Model Based on the Bi-directional Computation Style: An Analytical
Study and Its Estimation on Acquired Signal Transformation. Transacition IEE; Japan,
122-C(10):1794–1802.

170



BIBLIOGRAPHY

[Wang et al., 2014a] Wang, P., Eglin, V., Garcia, C., Largeron, C., Llados, J., and Fornes,
A. (2014a). A Novel Learning-Free Word Spotting Approach Based on Graph Repre-
sentation. In 11th IAPR International Workshop on Document Analysis Systems, pages
207–211. IEEE.

[Wang et al., 2014b] Wang, P., Veronique, E., Christine, L., Josep, L., and Alicia, F.
(2014b). A Novel Learning-free Word Spotting Approach Based On Graph Representa-
tion. In DAS, pages 207–211.

[Wang et al., 2014c] Wang, Q.-F., Yin, F., and Liu, C.-L. (2014c). Unsupervised lan-
guage model adaptation for handwritten Chinese text recognition. Pattern Recognition,
47:1202–1216.

[Wang et al., 2002] Wang, X., Ding, X., and Liu, C. (2002). Optimized Gabor filter based
feature extraction for character recognition. In Object recognition supported by user
interaction for service robots, volume 4, pages 223–226. IEEE Comput. Soc.

[Wei and Keogh, 2006] Wei, L. and Keogh, E. (2006). Semi-supervised time series classi-
fication. Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’06, pages 748–753.

[Weiss et al., 2009] Weiss, Y., Torralba, A., and Fergus, R. (2009). Spectral Hashing. In
Advances in Neural Information Processing Systems, pages 1753–1760.

[Wollmer et al., 2009] Wollmer, M., Eyben, F., Keshet, J., Graves, A., and Rigoll, G.
(2009). Robust Discriminative Keyword Spotting for Emotionally Colored Spontaneous
Speech Using Bidirectional LSTM Networks. ICASSP, pages 3949 – 3952.

[Xi et al., 2006] Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana, C. A.
(2006). Fast time series classification using numerosity reduction. In Proceedings of the
23rd international conference on Machine learning (ICML), pages 1033—-1040.

[Yang and Lee, ] Yang, T. and Lee, D. T3 : On Mapping Text To Time Series. In Pro-
ceedings of the 3rd Alberto Mendelzon International Workshop on Foundations of Data
Management, Arequipa, Peru.

[Yao et al., 2015] Yao, S., Wen, Y., and Lu, Y. (2015). HoG based Two-Directional Dy-
namic Time Warping for Handwritten Word Spotting. In ICDAR.

[Yau et al., 2003] Yau, S. S.-T., Wang, J., Niknejad, A., Lu, C., Jin, N., and Ho, Y.-
K. (2003). DNA sequence representation without degeneracy. Nucleic acids research,
31(12):3078–80.

[Yu et al., 2007] Yu, F. Y. F., Dong, K. D. K., Chen, F. C. F., Jiang, Y. J. Y., and Zeng,
W. Z. W. (2007). Clustering Time Series with Granular Dynamic Time Warping Method.
2007 IEEE International Conference on Granular Computing (GRC 2007).

[Zhang et al., 2003] Zhang, B., Srihari, S. N., and Huang, C. (2003). Word image retrieval
using binary features. In Proceedings of the SPIE, volume 5296, pages 45–53.

171



BIBLIOGRAPHY

[Zhang and Tan, 2013] Zhang, X. and Tan, C. L. (2013). Segmentation-Free Keyword
Spotting for Handwritten Documents Based on Heat Kernel Signature. In ICDAR,
pages 827–831. IEEE.

[Zifan et al., 2007] Zifan, A., Saberi, S., Moradi, M. H., and Towhidkhah, F. (2007). Auto-
mated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping. Interna-
tional Journal of Medical, Health, Pharmaceutical and Biomedical Engineering, 1(3):764–
768.

172



BIBLIOGRAPHY

173


